Eleo

WIRED ELECTRO-INSTALLATION

TECHNICAL CATALOGUE

U 0

ELKO EP

ELKO EP employs about 330 people, exports its products to more than seventy countries, and has representatives in fifteen foreign branches. Company of the Year of the Zlín Region, Visionary of the Year, Global Exporter of the Year, Participation in the Czech TOP 100, these are just some of the awards received. Still, we are not finnished. We are constantly striving to move forward in the field of innovation and development. That's our primary concern.

Millions of relays, thousands of satisfied customers, hundreds of our own employees, twenty seven years of research, development and production, fifteen foreign branches, one company. ELKO EP, innovative- a purely Czech company based in Holešov, where development, production, logistics, service and support go hand in hand. We primarily focus on developing and manufacturing systems for building automation in the residential, commercial and industrial sector, a wide range of Smart city facilities and the so-called Internet of Things (IOT).

Facts and stats

Wireless control system

CLASSIC ELECTRO-INSTALLATION

 www.elkoep.com/relay-modular-electronic-devicesElectricity is our everyday guide. In our range you will find electronic modular devices from time relays to thermostats. We build on solid foundations and have been developing and manufacturing for more than 27 years.

WIRELESS ELECTRO-INSTALLATION

www.elkoep.com/rf-control
An ideal solution for completed houses, when it is no longer possible to intervene in the structure. Communication works wirelessly through the central brain, the RF Touch unit. From this unit you control thermostats and can control up to a range of 200 m .

WIRED ELECTRO-INSTALLATION

If you are building a new house, this electrical installation is tailor-made for you. The data wire (bus) is routed in the walls through the entire house. The advantage is the possibility of expansion with a multimedia superstructure or connection of third parties (appliances, cameras, etc.)

The BUS electro installation iNELS BUS System is a unique solution for electrical installation in the implementation of new projects of houses, electrical installation il the implementation of new projects of houses,
villas, apartment buildings, office buildings, hotels, restaurants, wellness centres or perhaps even warehouse or production hall.
The ability to deploy this solution in such a wide variety of different buildings with various purposes and uses lies in its modularity. Thanks to the modular design, the system is very flexible and allows on the one hand, a solution of single-purpose tasks such as control of lighting in restaurants, and on the other hand, solving complex control systems for heating, ventilation, cooling, lighting and shading of office buildings. A complete range of control units designed from glass for management of hotel rooms is in the market unique. Thanks to its modularity is very easy to customize the size of the system and to that effect create a cost effective solution.
Smart homes and buildings are accompanied by three basic ideas, namely savings, comfort and safety, the first two ideas may at first glance contradict each other. However, the main objective of smart home or building equipped with the iNELS solution is to attain the optimum indoor environment while achieving the most efficient operation of all system.
In homes and buildings the optimal internal environment is very important because people nowadays spend up to 80% of their time inside buildings. It is also shown that indoor environments, where we talk about thermal comfort, lighting comfort and indoor air quality significantly affect the mood and the effectiveness of people.
The iNELS system allows connection of wide range of sensors (temperature, light intensity, carbon dioxide, humidity, and pressure) and detectors (movement, opening doors and windows, gas leakage, smoke, flooding) whose values are constantly evaluated. At the same time inels allows the connection of all the technologies that are installed in the building, which continued to significantly increase operational efficiency or comfort, for example; in the case of integrating the guest room management system with the receptionist Fidelio system, which automatically during check-in, sends the room requests for execution, a welcome scene (optimum temperature, comfortable lighting scene, music etc.).

What are the benefits of BUS controlling?

- Save energy by regulating lighting and heating properly - Control of blinds, awnings, exterior or internal window shutters
- Dimming lights, lighting scenes
- control of appliances or electrical devices
- Control access gates, garage doors
- Logical and central functions (exit button, ...)
- Manual and automatic control mode
- Preventing undesirable opening of a window or a door Responding to the movement of people (authorized and unauthorized)
- Remote monitoring via smartphone, tablet or laptop
- Possibility to control via the iNELS Touch Panel 10"
- Integration of third-party devices (cameras, air conditioning, ...)

More systems can be controlled by iNELS:

Push-button wall controller

Glass wall controller

Remote control

Smartphone

Touch panel

Keychain

iTP - iNELS Touch panel

Overview of system units 8

Wired electro-installation

CU3-05M, CU3-06M | Central unit - NEW! ... 16
PS3-100/iNELS | Power supply ... 18
PS3-30/iNELS | Power supply - NEW! .. 20
M13-02M | External master BUS 21

BPS3-01M, BPS3-02M | BUS separator from power supply .. 23
GSM3-01M | GSM communicator 23
24

SA3-06M | Switching actuator, 6-channels
\qquad
SA3-012M | Switching actuator, 12-channels ..
SA3-022M | Switching actuator, 22-channels
EA3-022M | Switching actuator without control and indication components, 22-channels $\quad M_{1}$
SA3-01B, SA3-02B | Switching Wiators, 1-channel and 2-channels $\quad . .$. 30
JA3-02B/DC | Roller (shutter) actuator, 2 -channels 31

LBC3-02M | Dimming actuator for electronic ballasts, 2-channels .35

RFDA-73M/RGB | Dimming actuator for LED (RGB) strips, 3 -channels
36

Lighting control

EMDC-64M | Gateway inels - DAL/DMX .. 40
DMD3-1 | Combined motion, temperature, humidity and light intensity detector .. 41
DLS3-1 | Luminescence sensor .. 42
Input units and converters
FA3-612M | Fan Coil Control actuator ..

IM3-40B, IM3-80B | Binary input units ... 46
TI3-40B | Temperature input, 4-channels .. 48

ADC3-60M | Analog-digital converter ... 50
DAC3-04B | Digital-analog converter .. 51
EST3 | Control unit with touch screen

.-................... | … 51 |
| :--- |
| $\cdots . \quad 52$ |
| .54 |

GSB3-40, GSB3-60, GSB3-80 1 Glass swich buttons \qquad
 WSB3-40, WSB3-40H Wall switch button, 4 buttons ... 57
GMR3-61 | Glass wall card reader 56
57| Glass wall card reader58
59
IDRT3-1 | Digital room thermo-regulator 60
Hospitality Solution
GCR3-11 | Glass card reader62
GDB3-10 | Glass door bell (info pane) 63
GCH3-31 | Glass card holder 64
EHT3 | Hotel control unit with touch screen$\begin{array}{r}. \\ . \\ \hline . \\ \hline 65\end{array}$
GRT3-50 | Glass room thermo-regulator 66
67
GBP3-60 | Glass bedside panel 68
GBP3-60 | Customization \& Accessories 70
GSP3-100 | Glass switch panel 72
Building Management SystemIntegration of iNELS to Building Management System (BMS)74
Multimedia
iTP 10" | iNELS Touch Panel 10 " 78
Connection Serv 79
eLAN-IR-003 81
eLAN-RS485/232 82
83
LARA Interc82
+83
85
Accessories LARA85
iNELS App: "ALL in ONE" 86
Accessories iNELS
TELVA-2 230V, TELVA- 224 V IThermodrive 88
AN-I, AN-E | Antenna 88
89
TC, TZ, Pt100 | Thermo sensors
90
Loadability of contacts
Installation possibilities 92
Dimensions 94

Wired electro-installations

Smart home \& building solutions
\qquad

- CU3-01M and CU3-02M are central units of the iNELS system and me diators, between user software interface and controllers, units and diators, between user software interface and controlers, units and
actuators connected to the BUS. - It's possible to directly connect up to 2 lines of BUSes in to CU3-01, and CU3-02M, and on each BUS we can connect up to 32 iNELS3 units - The main difference between CU3-02M and CU3-01M is that CU3-02M
is moreover equipped by RF module which enables communication is moreover equipped by RF module which enables communicatio with selected units from iNELS RF Control system
User's project and retentive data are stored in a non-volatile interna memory hereby data are backed up without the supply voltage. Rea time clock (RTC) backup for 10 days.
Power supply con
the backup batter
- Possibility of setting time synchronization via NTP server
-The RJ45 Ethernet port's connector is located on the front panel of the unit, the transmission speed is 100 Mbps ,
- For CU3-01M (02M) it is possible to use 4 potential-free inputs for con necting external controllers (buttons, switches, sensors, detectors.
etc) and 2 analog inputs $0-30 \mathrm{~V}$. etc.) and 2 analog inputs $0-30 \mathrm{~V}$.
CU3-01M (02M) comes with OLED display that shows the current statu and enables settings (network settings, date, time, service) of the cen
tral unit CU3-01M (02M) - Movement in the menu CU3-01M (02M) using arrows on the fron panel.
-CU3-01M (02M) in 6-MODULE are designed for mounting into a switch
board on the EN60715 DIN rail.
iNELS RF Control interface for CU3-02M

Communication protoco:	RF Touch Compatible
Transmitting frequency:	$866 \mathrm{MHz} / 868 \mathrm{MHz} / 916 \mathrm{MHz}$
Signal transmission methods:	bidirectionally addressed message
Output for RF antenna:	SMA connector*
RF antenna:	1 dB (part of package)
Free space range:	up to 100 m

EAN ode
min Cu3-07M: 8595188176262

Technical parameters	CU3-07M
Indication LED STATUS	
Green LED RUN:	Flashing - communication with BUS, ON- no communication
Red LED ERR:	Flashing - no project, ON - unit STOP
Communication	
ineLs bus	
Indication (LED BUS):	green - unit status indication red - BUS fault indication
Maximum number of units:	max. 32 units to one BUS line
Maximum cable length:	max. 300 m (depends on power loss)
BUS RS-485	
Indication (LED RS 485):	green-indication communication red - fault indication
Maximum cable length:	max. 300 m
Ethernet	
Connector:	R.44
Communication speed:	100 Mbps
Indication of the Ethernet (LED ETH):	green - Ethernet communication yellow - Ethernet speed 100 Mbps
The defaut IP address:	192.168.1.1
Button RESET	
Restart:	short press
Reset (Factory Reset):	press the button to apply power, release the button 10 s after power is applied
Power supply	
Supply voltage/tolerance:	$27 \mathrm{VDC},-20 /+10$ \%
Rated current:	55 mA (at 27 VDC$)$
Operating conditions	
Operating temperature:	-20 to $+55^{\circ} \mathrm{C}$
Storage temperature:	$-25 \mathrm{to}+70^{\circ} \mathrm{C}$
Humidity:	max. 80%
Protection degre:	IP20 devices, IP40 with cover in the switchboard
Overvoltage category:	1.
Pollution degree:	2
Operating position:	any
Installation:	to the switching board on the EN60715 DIN rail
Design:	${ }^{1}$-MODULE
Terminal:	max. $2.5 \mathrm{~mm}^{2}$
Dimensions and weight	
Dimensions:	$94 \times 17.6 \times 64 \mathrm{~mm}$
Weight:	72 g

U3-07M is a small central unit of 1 M size for managing small project such as a hotel room, small apartment or a cottage.
onfiguration is performed by software inELS Designer and manager tion with CU3.
he unit can work as a stand-alon.
for the supervisor unit CU3-0xM
The CU3-O7M is equipped with one BUS line to which up to 32 iNELS nected.
For communication and configuration, the unit is equipped with RJ45 connector with a 100 Mbps Ethernet port.
or ModBus communication, e.g. with fan coils, air-condition and the mostats in the hotel room, the unit is equipped with ModBus port. U3-OM in 1-MODULE version is designed for mounting into a switch board, on DIN rail EN60715.

CU3-01M, CU3-02M, CU3-05M, CU3-06M, CU3-07M

 Installation BUSTwo-wired BUS with a free topology (closing in circle is permitted). With its own modulated communications on the DC voltage supply. One line of BUS allows you to connect up to 32 units of inELS3 The current load of one line is max. 1 A . When connecting units whic takes more than $1 \mathrm{~A}, \mathrm{BPS5}$-01M with 3 A sampling can be used. Maximum length of the BUS is approximately 300 m (depends on the voltage drop).
Recommended cable

- iNELS BUS Cable - Twisted pair of copper wires with size of AWG20 wire (diameter of 0.8 mm , cross-section of 0.5 mm 2).

System BUS EBM:

Used to connect the CU3-OXM central unit with M13-02M external mas ters, GSM communicator GSM3-01M or converter DALI/DMX EMDC 64 M.
BM has strictly linear topology and wires are connected to terminals EBM+ and EBM-, wires can not be interchanged.
Nax. length of the line of EBM is 500 m .
The EBM BUS has to be terminated at both ends.
his termination has to be inserted between terminals and is included in central units packages and it is necessary to insert between termina EBM and EBM-.
Recommended cabling:
CAT5e UTP and higher, or FTP CAT5e and higher or STP CAT5e and higher.
-The configuration of units and the whole system is done via Ethernet, hrough configuration software - iNELS3 Designer \& Manager (iDM3, hrough configuration software - iNELS3 Designer \& Manager (iDM3),
which is designed for operating systems Windows 7 , Windows 8 and Windows 10 .
The central unit features two communication protocols:
ELKONET - to communicate with Connection Server or directly with he application iHC .
ASCII - communication with third systems and integration with BMS Building Management Systems), for example Niagara 4 or FlowBox. upported Software:
Parameterization, configuration, control and visualization: iNELS3 Deigner \& Manager (iDM3).
iRidium mobile
Niagara Frameworks
Flowbox
Promotic
y means of iDM3, you can update firmware of central units and peripheral units connected by BUS.

CU3-05M and CU3-06M are the new central units of the inELS system and are an intermediary between the user programming environment and are an intermediary between the user program ming en
and controllers, units and actuators connected to the bus.
Up to two BUS lines can be connected directly to the CU3-05M and CU3-06M, and up to 32 iNELS3 units can be connected to each BUS. With the new processors you can manage your complex tasks literally instantly.
Additional units can be connected to the system via MI3-02M expansion modules, which are connected to the CU3-05M (06M) via the EBM system bus.
Additional units can be connected to the system via M13-02M/ETH expansion modules, which are connected to the CU3-05M (06 M) via Ethernet.
The CU3-06M central unit differs from the CU3-05M in that it is additionally equipped with an RF module enabling communication with selected units from the iNELS RF Control system.
The user project and retentive data are stored on non-volatile internal
memories and the data is therefore backed up even without the prememories and the data is therefore backed up even without the pre-
sence of supply Possibility to set time synchronization via NTP server.
The RJ45 Ethernet port connector is located on the bottom of the unit; the transfer rate is 100 Mbps .
CU3-05M, CU3-06M in 6-MODULE version are designed for mounting in a switchboard on DIN rail EN60715.

Indication LED

switching power supply works correctly
output voltage 27 V is correct ($\mathrm{U}_{\text {our }} 24 \mathrm{~V}$) output voltage 27 V is correc
output voltage 12 V is correct
on

switching power supply not working correctly UPS mode
 batteries are not recharged

- UPS mode
low output voltage $27 \mathrm{~V}(21 \mathrm{~V}<\mathrm{U}$ our $<24 \mathrm{~V})$
output voltage 12 V is correct
output voltage 12 V is correct
switching power supply works correctly
low output voltage $27 \mathrm{~V}\left(21 \mathrm{~V}<\mathrm{U}_{\text {our }}<24 \mathrm{~V}\right)$ low output voltage
output voltage 12 V is correct
batteries are not recharged batteries are not recharged
switching power supply works correctly output voltage 27 V is correct ($\mathrm{U}_{\text {our }} 24 \mathrm{~V}$) low output voltage 12 V (short-circuit, overload) batteries are recharged

```
switching power supply is overload
low output voltage 12V V
```

- PS3-100/iNELS is a stabilized switching power supply, with the total
power of 100 W .
- Used to supply central units and external master within intelligent electro-installation iNELS.
-Through BUS separators from the supply voltage BPS3-01M and BPS3
O2M, it supplies BUS lines 02M, it sup
powered.
- Fixed output voltage $D C 27.6 \mathrm{~V}$ and DC 12.2 V , galvanically isolated - Fred output vol
from the mains.
- Power source of 27 V and 12 V have a common ground terminal GND. - Electronic short circuit protection, high-capacity and thermal over load, over voltage detection.
UPS - Recharging the batteries from 27 V source.

Protection battery backup fuse - protection against short circuit and reverse polarity battery
Continuously adjustable maximum battery charging current.

- Indication of operating and fault conditions 6 LED diodes on the front panel of the power supply
2 STATUS outputs with open collector for reporting operational status of the source.
- Source supplies power to the priority system iNELS, the remaining power is used for rechargeable batteries.
- When the battery is fully discharged, the battery is automatically dis connected from the load.
- PS3-100/iNELS in 6-MODULE version is designed for mounting into
a switchboard, on DIN rail EN60715.

Example of connection

Technical parameters	PS3-100/iNELS
AC Input	
Power supply:	$100-250 \mathrm{VAC} / 50-60 \mathrm{~Hz}$
Dissipated power:	max. 20 W
Powerload	
(apparent/active):	max. $13 \mathrm{VA} / 2 \mathrm{~W}$
Power consumption at max. load (apparent/active):	max. $180 \mathrm{VA} / 111 \mathrm{~W}$
Protection:	safety fuse T3.15 A inside the unit electronic protection
DC Input	
Power supply:	DC 24V (two 12 V batteries in series)
Protection:	-safety fuse F6.3 A external - electronic protection against current overload
Terminals for connecting	each battery separately
the battery:	- separately routed extreme terminals (24)
Automatic disconnect	-for the battery voltage <21V
the battery:	- when exceeding discharge current 4.2 A
Outputs	
Output voltage 1:	27.6 V
Max. capacity:	3.6 A
Output voltage 2:	12.2 V
Max. capacity:	0.35 A
The overall efficiency of esources:	about 88%
Time delay after connecting to the AC network:	max 15
Max. charging current:	adjustable from 0.2 to 2.2 A
LED Signalization	
Output voltage 27 V OK	
($\mathrm{Uour}^{\text {c }}$ 24V):	green LED $\mathrm{U}_{\text {our }}$ OK
Switch. power supply does not work (does not oscillate):	flashing red LED $\mathrm{U}_{\text {ope }}$ FAlL (fif battery is connected)
Low output voltage	
($21 \mathrm{~V}<\mathrm{U}_{\text {out }}<24 \mathrm{~V}$):	yellow LED $\mathrm{our}_{\text {out }}$ LOW
Output voltage 12 VOK	
(U > 11 V):	green LED +12 V OK
Overloading the power supply $\left(U_{\text {OUT }}<21 \mathrm{~V}\right) \text { : }$	red LED OVERLOAD
Charging the battery (charging current > 50 mA):	yellow LED CHARGE
Output status	
STATUS output $1\left(\mathrm{U}_{\text {Pe }} \mathrm{OK}\right.$):	closed, when power supply works (not blinking LED U FAIL)
STATUS output 2 ($\mathrm{O}_{\text {out }} \mathrm{OK}$):	closed, if $\mathrm{O}_{\text {our }}>21 \mathrm{~V}$ (not lit red LED OVERLOAD)
Output type:	open collector current limited
Max. connectable voltage:	50 VDC
Max. current output:	50 mA
Voltage drop on	at 10 mA to 140 mV
the switch max:	at 30 mA to 400 mV
	at 50 mA to 700 mV
Other Data	
Electric strength AC	
input-output:	4 kV
The connection terminals:	row
Cable size ($m m^{2}$):	max. 1×2.5, max. 2×1.5 (swith sleeve $\max 1 \times 1.5$)
Operating temperature:	$-20^{\circ} \mathrm{Cto}+55^{\circ} \mathrm{C}$
Storage temperature:	$-30^{\circ} \mathrm{Coo}+70^{\circ} \mathrm{C}$
Working humidity:	20 to 90% RH
Cover:	IP20 device, IP40 mounting in the switchboard
Overvoltage category:	III.
Degree of pollution:	2
Working position:	arbitrary, vertical is optimum
Installation:	on the DIN rail EN60715
Execution:	${ }^{6}$-MODULE
Dimensions:	$90 \times 105 \times 65 \mathrm{~mm}$
Weight:	4019
Related standards:	general: EN61204, safety: EN61204-7, EMC: EN61204-3

Description of device functions

-The device consists of several functional blocks.
-The basic part is 100 W power supply with 2 output voltage levels. -voltage of 27.6 V is used to supply the system iNELS and to recharge - voltage of 12.2 V is for power as intrusion detectors (ESAS) or EFAS. both voltages are available without interruption during power AC power supply (UPS function) - assuming they are connected to power supply
a backup battery.
Other parts of the source circuits are battery backup and recharge which provide switching mode connection, charging and disconnect ing the battery
circuit is immediately mode, the battery is completely discharged, the mum discharge current is al off to avoid deep discharge. The maxi ies are again disconnected. -if the switched source is working (oscillating), and its output voltag are greater than 26.9 V , the backup batters are charged by the curren and the maximum value is set by trimmer on the panel source. feeds the iNELS system, and the remaining capacity of up to 100 W only recharges the battery.
only recharges the battery.
if the output is high, this disconnects the charge (the yellow LED CHARGE switches off).
upon further increasing, the load further decreases the voltage source and the load current also flows from the battery the voltage source battery power to the load together).
if the source is disconnected from the AC network (does not oscillate), and you connect batteries now, the batters remain disconnected and power outputs are without power. To activate, the source must be
connected to the power supply. connected to the power supply.
The last part of the unit are signaling circuits and status outputs. ing, so they can switch signal data) are equipped with current limit ing, so they can switch signaling components directly without exter nal resistors (e.g. LED, optocouplers or relay coil)
the LED signaling function is given in the table the LED signaling function is given in the table of technical param eters and illustratively described in seven case studies.

Technical parameter

AC Input	
Power supply:	$100-250 \mathrm{VAC} / 50-60 \mathrm{~Hz}$
Dissipated power:	max.6.5
Power load	
(apparent/active):	max. $10 \mathrm{VA} / 1.5 \mathrm{~W}$
Power consumption at max.	max $54 \mathrm{VA} / 33 \mathrm{~W}$
Protection:	fuse T2A inside the unit
Outputs	
Output voltage:	27 V
Max. capacity:	1 A
The overal efficiency of fesources:	> 82%
Time delay after connecting to the AC network:	max.5s
Indication LED	
Green LED Power:	power indication
Green LeD bus:	unit status indication
Other Data	
Electric strength AC	4 kV
The connection terminals:	row
Cable size (mm):	max. 1×2.5, max. 2×1.5 (swith sleeve max. 1×1.5)
Operating temperature:	$-20^{\circ} \mathrm{Cto}+55^{\circ} \mathrm{C}$
Storage temperatur:	$-30^{\circ} \mathrm{Cto}+70^{\circ} \mathrm{C}$
Working humidity:	20 to 90% RH
Cover:	IP20 device, IP40 mounting in the switchboard
Overvoltage category:	III.
Degree of pollution:	
Working position:	arbitrary, vertical is optimum
Installation:	on the DII rail EN60715
Execution:	3-Module
Dimensions:	$90 \times 52 \times 65 \mathrm{~mm}$
Weight:	160 g
Related standards:	general: : EN61204, safety: EN61204-7, EMC: EN61204-3

PS3-30/iNELS is a stabilized switching power supply, with the tota power of 30 W .

- Used to supply central units and external master within intelligen electro-installation inELS.
-Electronic short circuit protection, high-capacity and thermal over load, over voltage.
- Part of the power supply is an internally integrated bus separator for supplying one BUS branch, from which the iNELS peripheral units are
further supplied This BUS Ine can be taded with up to 1 A further supplied. This BUS line can be loaded with up to 1 A .
- PS3-30/iNELS in 3-MODULE version is designed for mounting into
a switchboard, on DIN rail EN60715.

Connection

External master M13-02M provides expansion of the amount of units ELS3 connected to the central unit CU3-0XM of two other lines of BUS (i.e. about 2×32 peripheral units).
Through the system BUS EBM, it is pos
unit up to 8 external masters M13-02M. nal masters M13-02M we can reach maximum capacity of iNELS system up to 576 peripheral units.

- fyou require an extended system then it is possible to use commun cation of up to 8 central units with Connection server using ELKONET SCll protocol.
MI3-02M have marked on the front panel of the unique hardware address. This address belongs to the line BUS1. Hardware address of BUS2 line is always one value higher than for BUS1.
MI3 units are supplied from PS3-100/iNELS.
To power the lines BUS, it it necessary to use a BUS separator BPS3-02M
or BPSS3-01M (supply or BPS3-01M (supply only one line).
Status signaling of each BUS (operation, fault) is indicated by two .on
a 120Ω termination resistor. This part adapted to be inserted betwee erminals is included into central units packages and it is necessary to terminals is included into centraf units pack-
MI3-02M in 1-MODULE version is designed for mounting into a switch board, on DIN rail EN60715.

Connection

MI3-02M/ETH | External master BUS with Ethernet communication

Technical parameters	MI3-02M/ETH
Indication LED STATUS	
Green Led run:	Flashing -communication with BUS, ON - no communication
Red LED ERR:	Flashing - no project, ON - unit STOP
Communication	
$2 \times$ BUS	
Indication (LED bUS):	green - unit status indication red - BUS fault indication
Maximum number of units:	max. 32 units to one BUS line
Maximum cable length:	max. 300 m (depends on power loss)
евм	
Indication (LED EBM):	green - indication communication red - fault indication
Maximum cable length:	max. 300 m
Ethernet	
Connector:	RJ45
Communication speed:	100 Mbps
Indication of the Ethernet	green - Ethernet communication
(LED ETH):	yellow - Ethernet speed 100 Mbps
The defaut IP address:	192.168.1.1
Button RESET	
Restart:	short press
Reset (Factory Reset):	press the button to apply power, release the button 10 s after power is applied
Power supply	
Supply voltage/tolerance:	27VDC, -20/+10\%
Rated current:	50 mA (at 27 VDC$)$
Operating conditions	
Operating temperature:	-20 to $+55^{\circ} \mathrm{C}$
Storage temperature:	-25 to $+70^{\circ} \mathrm{C}$
Humidity:	max. 80%
Protection degree:	IP20 devices, IP40 with cover in the switchboard
Overvoltage category:	1.
Pollution degree:	2
Operating position:	any
Installation:	to the switching board on the EN60715 DIN rail
Design:	${ }^{1}$-Module
Terminal:	max. $2.5 \mathrm{~mm}^{2}$
Dimensions and weight	
Dimensions:	$94 \times 17.6 \times 64 \mathrm{~mm}$
Weight:	72 g

- The external master MIB-O2M/ETH enables the expansion of the num
ber of connected iNELS3 peripheral units to the central unit CU3 by ber of connected iNELS3 peripheral units to the central unit CU3 b
another two lines of the installation BUS (by 2×32 peripheral units). -The unit can communicate with the CU3 central unit via the EBM sys tem bus or via Ethernet.
- Up to 8 pcs of M13-02M/ETH can be connected to one CU3 via the EBM bus.
- The unit MI3-02M/ETH is powered by a PS3-100/iNELS or PS3-30/iNELS power supply.
The status of each BUS line of the installation (run, error), EBM and ETH is signaled by the corresponding color LED on the front panel of the unit.
- If this is the first or last unit on the EBM system bus, the line must be terminated with a resistor with a nominal resistance of 120Ω. - MI3-02M/ETH is a 1-MODULE version, designed for mounting in a switch board on DIN rail EN60715.

Connection

Units BPS3-01M and BPS3-02M serve for imedance separation of BUS from supply voltage power.
BUS separator BPS3-01M or BPS3-02M is required for each type CU3 O1M (02M) or CU3-05M (06M) central unit and external master M13-02M. BPS3-01M allows you to connect one BUS with max. Ioad 3 A.

- BPS3-02M allows you to connect two separate BUS1 and BUS2 with max. load 1 A for each line.
- Outputs are equipped with overcurrent and overvoltage protection.
- Indication of output voltage outputs BUS LED.

BPS3-01M and BPS3-02M in 1-MODULE version is designed for mount ing into a switchboard, on DIN rail EN60715.

Technical parameters	BPS3-01M	BPS3-02M
Outputs		
Maximum capacity:	3 A	2×1A
Communication		
Installation BUS:	1x BUS	2x BUS
Power supply		
Supply voltage/tolerance:	$27 \mathrm{VDC},-20 /+10 \%$	
Dissipated power:	max. 0.5 W	
Rated current:		
	max. 8 mA	max. 15 mA
Status indication voltage on terminals:	$1 \times$ green LED	$2 \times$ green LED
Connection		
Terminals:	max. $2.5 \mathrm{~mm} / 1.5 \mathrm{~mm}^{2}$ with sleeve	
Operating conditions		
Operating temperature:	-20 to $+55^{\circ} \mathrm{C}$	
Storage temperature:	-30 to $+70^{\circ} \mathrm{C}$	
Protection degre:	IP20 device, IP40 mouting in to the switchboard	
Overvoltage category:	1.	
Pollution degree:	2	
Operating position:	any	
Installation:	in a switchboard on DIN rail EN 60715	
Design:	1-MODULE	

1-MODULE

Dimensions
70

Connection
BP53-01M

BPS3-02M

Technical parameters	GSM3-01M
Communication	
Communication interface:	system BUS EBM
GSM network (Quad-band):	850/900/1800/1900 MHz
Transmitter output power:	2 W for GSM 900, 1 W for GSM 1800
Number of supported calls:	8 incoming, 8 outgoing
Number of informative SMS:	32 incoming, 32 outgoing
Number of telephone numbers:	up to 512
LED indication - operation state/fault in BUS:	Led Status
Output for antenna:	SMA connector*
Power supply	
Supply voltage/tolerance:	$27 \mathrm{VDC},-20 / 10 \%$
Rated current:	250 mA (at 27 V DC)/max. 1 A
Suppy voltage indication:	green LED Un
Connection	
Terminals:	max. $2.5 \mathrm{~mm}^{2} 1.5 \mathrm{~mm}^{2}$ with sleeve
Operating conditions	
Operating temperature:	-20 to $+55^{\circ} \mathrm{C}$
Storing temperature:	-30 to $+70^{\circ} \mathrm{C}$
Protection degre:	IP20 devices, IP40 with cover in switchboard
Overvoltage category:	II.
Pollution degre:	2
Operation position:	any
Installation:	to DIN rail EN 60715
Design:	3-Module
Dimensions and weight	
Dimensions:	$90 \times 52 \times 65 \mathrm{~mm}$
Weigh:	132 g

It serves for communication with the iNELS system via commands sen in short SMS messages from mobile phone GSM. - With the GSM3-01M and a smartphone, it it possible by SMS message
or a call to control the iNELS system or obtain information on its status and current events.

- By means of the software iDM3, you can use up to 8 incoming calls, 8 outgoing calls, 32 incoming SMS messages and 32 outgoing SMS messages.
- For SMS messaging, the message length is limited to 32 characters, and for each message, you can set up to 8 telephone numbers. In total it is possible in iDM3 to use up to 512 telephone numbers.
- One telephone number can be set for each incoming and outgoing call. - The maximum length of an incoming call is around 30 s, and then the
GSM 3 -01M hangs up. The user can set the length of outgoing calls in the software iDM3.
- GSM3-01M can be used for informing users about any system status, e.g. in the event of a fault in some technology or building interference. - Operating range is 850,900 as well as $1800,1900 \mathrm{MHz}$ (quad-band). - SIM card is inserted into the unit from the front panel.
- The MIN USB connector on the front panel is used for servicing, but configuration of telephone numbers, SMS messages and calls is done from the software iDM3.
GSM3-01M connects to the central unit CU3-01M (02M) via the EBM In case it inverminals EBM+ and EBM-).
to terminate the wire with a resistor with rated resistance of 120Ω. This part adapted to be inserted between terminals is included into
central units packages and it is necessary t insert central units packages and it is necessary to insert between terminals EBM + and EBM
- The package includes is an external magnetic antenna (cable $3 \mathrm{~m}, 5 \mathrm{~dB}$
gain), which is connected - GSM3-01M in 3-MODULE version is designed for mounting into a switchboard, on DIN rail EN60715.

Connection

SA3-04M is a switching actuator containing 4 independent relays with changeover potential-free contacts.
Maximum load per contact is 16 A/4000 VA/AC1.
Each of the 4 outputs contacts are individually controllable and addressable.
All four relays are individually decorated input terminals, and therefore can switch various independent potentials.
The actuator is designed for switching 4 various appliances or loads by elay outputs (potential free contacts).
hanks to changeover contacts, it can be used to control up to two drives 230 V power (such as blinds, shutters or awnings) with approriate bridging, the contacts can secure hardware blocking the pos sibility of simultaneous switching of the phase on both outputs, see EDs on the front panel
Contact status of each relay can be changed separately and manually by control buttons on a front panel.
Switching actuators SA3 is normally supplied in the option AgSnO_{2} contact material.
SAB-O4M in 3 -MODULE version is designed for mounting into a switchboard, on DIN rail EN60715.

The actuator is designed for switching up to six various appliances and loads with potentialless contact.
SAB-06M is a switching actuator contains 6 independent relays with
changeover potentialless contacts. Changeover potentialless contacts.
Maximum load per contact is 8 A/2000 VA/AC1.

- Each of six output contacts are individually controllable and addressable. - The relays are divided into two groups, the group of four relays on the
bottom terminal switches the common potential, a pair of relays on top of the terminal switches the second common potential.
- The actuator is suitable for operating discontinuously controlled thermo drives in the distributor of floor heating.
- LEDs on the front panel signals the status of each output.
- Contact status of each relay can be changed separately and manually
by control buttons on a front panel. by control buttons on a front panel.
SA3-06M is normally supplied in the option AgSnO_{2} contact material. - SA3-06M in 3-MODULE version is designed for mounting into
a switchboard/DIN rail EN60715.

Connection

The actuator is designed for switching twelve various appliances and
loads with potentialless contact. loads with potentialless contact.
lays with NO potentialless contacts containing 12 independent re lays with NO potentialless contacts, with the fact that switches th

- Maximal loadability of contacts is $8 \mathrm{~A} / 2000 \mathrm{VA} / \mathrm{AC}$

Each of the twelve output contacts are individually controllable and addressable.

- Actuator SAB-012M is powered by an AC voltage 230 V . The unit SA3-012M/ 120 V is powered by AC voltage 120 V AC .
BUS is galvanically separated from the internal circuits of unit.
- LED on front panel signalizes state of each output.

Contact status of each relay can be changed separately and manually by control buttons on a front panel.

- SA3-012M is normally supplied in the option AgSnO_{2} contact material SA3-012M in design 6-MODULE is designed to be mounted into
a switchboard, onto DIN rail EN60715.

Connection

Technical parameters	EA3-022M
Outputs	
Output relays separated	reinforced insulation
from all internal circuits:	(Cat.II surges by EN 60664-1)
Insulation between COM	reinforced insulation
potentials:	(Cat. II surges by en 60664-1)
Isolates. voltage open	
relay contact:	1 kV
SSR (Electronic Relay):	4x switching (VALVE1-VALVE2)
Switching voltage:	20-240 VAC
Switching output:	480 VA
Surge current:	$20 \mathrm{~A}, \mathrm{t} 516 \mathrm{~ms}$
Relay 6 A:	12x switching (RE1-RE6, RE11-RE16),
	1x HW block changeover (OUT1, OUT2)
Switching voltage:	$250 \mathrm{VAC}, 24 \mathrm{VDC}$
Switching output:	1500 VA/AC1; 300 VA/AC15; $180 \mathrm{~W} / \mathrm{DC}$, AC3
Minimum switching load:	500 mW ((12 V/10 mA)
Mechanical life:	10×10^{6}
Electrical life AC1:	6×10^{4}
Relay 10 A :	4x switching (RE7-RE10)
Switching voltage:	$250 \mathrm{VAC}, 24 \mathrm{VDC}$
Switching output:	2500 VA/AC1, $240 \mathrm{~W} / \mathrm{DC}$
Surge current:	30 Amax .45 at 10%
Minimal switched current:	100 mA
Switching frequency withoutload:	
	1200 min $^{-1}$
Switching frequency with	
rated load:	$6 \mathrm{~min}^{-1}$
Mechanical life:	3×10^{7}
Electrical life AC1:	0.7×10^{5}
Communication	
Instalation BUS:	bus
Unit status indication:	green LED RUN
Power supply	
Supply voltage/tolerance:	$27 \mathrm{VDC},-20 /+10 \%$
Dissipated power:	max. 2 W
Rated current:	$100 \mathrm{~mA} \mathrm{(at} 27 \mathrm{VDCl}$, from BUS
Connection	
Terminal:	max. $2.5 \mathrm{~mm}^{2} 11.5 \mathrm{~mm}^{2}$ with sleeve
Operating conditions	
Operating temperature:	-20 to $+55^{\circ} \mathrm{C}$
Storing temperature:	-30 to $+70^{\circ} \mathrm{C}$
Protection degree:	1 P20 device, IP40 mounting in the switchboard
Overvoltage category:	1.
Pollution degre:	2
Operating position:	any
Installation:	switchboard on DIN rail EN 60715
Design:	6 -MODULE
Dimensions and weight	
Dimensions:	$90 \times 105 \times 65 \mathrm{~mm}$
Weight:	337 g

quipped with 22 relay outputs (of which $1 \times$ changeover contact - roller blinds, blinds).
switch lighting and socket circuits (6 A and 10 A relay) with common pontial at the "COMx" termina
ontrol of roller blinds, blinds ($24-230 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$)
elay control of the fan coil unit - heating/cooling, 3 fan speeds $24-230 \mathrm{~V} \mathrm{AC/DC})$.
Connection to BUS, communication with CU3.
gned to be mounted into switchboard, onto DIN rail EN60715.

Connection

SAB-228: 8595188123367		
Technical parameters	SA3-01B	SA3-02B

Inputs		
Temperature measuring:	Yes, input for external thermo sensor TC, TZ	
Scope and accuracy of tem. meas::	-20 to $+120^{\circ} \mathrm{C} ; .5^{\circ} \mathrm{C}$ from the range	
Outputs		
Output:	$1 \times$ switching 16 A/AC1	$2 \times$ changeover 8 A/AC1
Switching voltage:	$250 \mathrm{VAC}, 24 \mathrm{VDC}$	
Switched load:	4000 VA/AC1, 384 W/DC	2000 VA/AC1, $192 \mathrm{~W} / \mathrm{DC}$
Surge current:	$30 \mathrm{~A} ;$ max. 4 s. when repeating 10%	10A
Output relays separated from all internal circuits:	reinforced insulation (Cat. Il surges by EN 60664-1)	
Insulation voltage between relay outputs RE1-RE2:	\times	basic isolation (Cat. II surges by EN 60664-1)
Minimal switching current:	$100 \mathrm{~mA} / 5 \mathrm{~V}$	
Switching frequency/no load:	$1200 \mathrm{~min}^{-1}$	$300 \mathrm{~min}^{-1}$
Swithing frequency/rated load:	6 min $^{-1}$	15 min ${ }^{-1}$
Mechanical lifetime:	3×10^{7}	1×10^{7}
Electrical lifetime for $\mathrm{AC1}$:	0.7×10^{5}	1×10^{5}
Output indication:	yellow LED	$2 \times$ yellow LED
Communication		
Installation BUS:	BuS	
Power supply		
Supply voltage/tolerance:	$27 \mathrm{VDC},-20 /+10 \%$	
Dissipated power:	max. 4 W	
Rated current:	$30 \mathrm{~mA}(\mathrm{at} 27 \mathrm{VDC})$	50 mA (at 27 VDC$)$
Status indication unit:	green LED RUN	
Connection		
Data terminals:	terminal, 0.5-1 mm	
Power outputs:	$2 \times$ conduct. C Y, $\varnothing 2.5 \mathrm{~mm}$	6x conduct. CY, $0.75 \mathrm{~mm}^{2}$
Operating conditions		
Operating temperature:	-20 to $+55^{\circ} \mathrm{C}$	
Storage temperature:	-30 to $+70^{\circ} \mathrm{C}$	
Protection degree:	1 P 30	
Overvoltage category:	1.	
Pollution degree:	2	
Operating position:	any	
Installation:	into installation box	
Dimensions and weight		
Dimensions:	$49 \times 49 \times 21 \mathrm{~mm}$	
Weight:	50 g	50 g

- Actuators are designed for switching of one (SA3-011B), respectively two (SA3-02B) of various appliances and loads by relay outputs (po tentialless contacts).
SA3-01B contains 1 relay with switching potentialless contact with
max. load $16 \mathrm{~A} / 4000 \mathrm{VA} / \mathrm{AC1}$. SA3-02B contains 2 relays with switching potentialless contacts with max. load 8 A/2000 VA/AC1.
- Output contacts are separately controllable and addressable.
-Thanks to changeover contacts, the SA3-02B actuator can used to control a 230 V drive (such as blinds, shutters or awnings), whereas by proper bridging of contacts, it is possible to secure locking hardware options while switching on phase two outputs.
- Actuators are equipped with a temperature input for connecting an external two-wire temperature sensor TC/TZ (see accessories).
SED on front panel signalizes state of each output.
- SA3-01B, SA3-02B are designed for mounting into the installation box

Connection

SA3-01B

SA3-02B

- JA3-O2B/DC actuator serves to control blinds, shutters, garage doors,
entrance gates, etc. entrance gates, etc.
Actuator can control electrical motors, which are controlled in 2 direc Aions and have a built-in limit switch.
A-ODC, where the directilric drives with supply voltages up to $24 \mathrm{~V} D$, where the direction of rotation of the driver is controlled by

The unit is equipped with thermal and overcurrent overload prote tion of outputs.

- Status of units is indicated by green LED RUN on the front panel:
with the supply voltage connected (through BUS) and the unit is not controlled by BUS, LED RUN shines.
with the supply voltage connected (through BUS) and the unit is controlled by BUS, LED RUN flashes.
Status of output contacts UP/DOWN ($\frac{1}{\circ}$):
while contact UP (α) is switched, red LED shines (orange
while contact DOWN $\left(\sim^{\star}\right)$ is switched, green LED shines.
The unit is also equipped with two analog digital inputs (AIN/DIN),
which can be used to connect two potential free contacts (e.g. to connect double button for local control) or a single external temperature sensor TC/TZ (see accessories).
JA3-02B/DC is designed for mounting into an installation box.

Connection

* Maximal operation time of outputs with rated current 0.85 A is 10 minutes...
after that the output heating protection activates. The lower the current,
after that the output heating protection activates. The lower the current,
the longer duration of protection.

Technical parameters	JA3-018M
Outputs	
Output:	9x changeover 4 $\mathrm{A} / \mathrm{AC} 15$
Switched voltage:	$250 \mathrm{VAC}, 24 \mathrm{VDC}$
Switched output:	1000 W/AC15, $100 \mathrm{~W} / \mathrm{DC}$
Peak current:	10 A
Output relay separated	basic insulated
from all internal circuits:	(Cat. III surges by En 60664-1)
Isolation between relay out-	basic insulated
puts Gatel Gate2 and GAtE3:	(Cat.II surges by en 60664-1)
Isolates. voltage open	
relay contact:	1 kV
Minimal switched current:	$100 \mathrm{~mA} / 10 \mathrm{VDC}$
Switching frequency without	
load:	$300 \mathrm{~min}^{-1}$
Switching frequency with	
rated load:	15 min ${ }^{-1}$
Mechanical I Ife:	1×10^{7}
Electrical life AC1:	1×10^{5}
Output indication:	$9 \times$ yellow LED
Communication	
Installation BUS:	BUS
Status indication unit:	green LED RUN
Power supply	
Supply voltage by BUS/	
tolerance/nominal current:	$27 \mathrm{VDC},-20 /+10 \%$, 5 mA
Supply voltage of power section (relay) tolerance/ nominal current:	AC $230 \mathrm{~V}(50 \mathrm{~Hz})$, $-15 /+10 \%, 20 \mathrm{~mA}$
Dissipated power:	max. 2 W
Connection	
Terminal:	max. $2.5 \mathrm{~mm}^{2} 1.5 \mathrm{~mm}^{2}$ with sleeve
Operating conditions	
Operating temperature:	-20 to $+55^{\circ} \mathrm{C}$
Storing temperature:	-30 to $+70^{\circ} \mathrm{C}$
Protection degree:	IP20 device, IP40 mounting in the switchboard
Overvoltage category:	I.
Pollution degre:	2
Operating position:	vertical
Instalation:	switchboard on DIN rail EN 60715
Design:	${ }^{6}$-MODULE
Dimensions and weight	
Dimensions:	$90 \times 105 \times 65 \mathrm{~mm}$
Weight:	346 g

- JAB-018M is an actuator designed for controlling rollers, shutters,
blinds, awnings, garage doors, entrance gates etc blinds, awnings, garage doors, entrance gates, etc.
It controls electric drives that are controlled in two directions and
have a built-in limit switch. -The unit's status is indicated by the green RUN LED on the front pane - if the power supply is connected, but there is no communication via BUS with master, the LED RUN is on continuously. the LED RUN flashes.
- The status of the output contacts is indicated by the U/D LED: - when the blind/roller blind is moving up/down, the corresponding LED lights up.
-if the number
corresponding LED flashes.
Conspong LED fashes. board on DIN rail EN60715.
Connection

- DA3-22M is a universal dimming 2 -fold actuator enabling control of brightness intensity of dimmable light sources of the type ESL, LED and RLC with power supply 230 V .
DA3-22M has two MOSFET controlled outputs 230 VAC , maximum
load is $2 \times 400 \mathrm{VA}$. - Option of connecting an external temperature sensor.
- Each output channel is independently controllable and addressable. - Type of light source is set by a switch on the front panel.
- By setting the min. brightness potentiometer on the front panel, flash-- ing of different types of light sources is eliminated.
- DA3-22M is equipped with two inputs 230 V AC , which can be controlled by mechanical switches (buttons, relays). Inputs are galvani cally connected to potential L, which is permanently at the terminals IN1 and 1 N2
By clicking on buttons on the front panel you can manually switch on or off the corresponding output.
Electronic overcurrent and thermal protection - switch off output in The power supply (potential L) must be protected by a protective ele. ment corresponding to the power input of the connected load, e.g. a safety fuse.
During installation, it is necessary to leave on each side of the actuato at least half the module space for better cooling.
DA3-22M in 3-MODULE version is designed for mounting into a switchboard on DIN rail EN60715.

Connection

Types of connectable loads

type of source	symbol	description
$\underset{\text { restive }}{\text { R }}$	(M)	ordinary light bulb, halogen lamp
${ }_{\text {inductive }}^{\text {L }}$	$\underset{\text { HAL } 12:-24 \mathrm{~V}}{\mathrm{~T}} \mathrm{PII}$	coiled transformer for low-voltage halogen lamps
$\underset{\text { cepactive }}{\substack{\text { ca }}}$	- =-2x	electronic transformer for low-voltage halogen lamps
LED	\#	LED lamps and LED light sources, 230 V
ESL	吅	dimmable energy-saving fluorescent tut

*The inputs are not galvanically isolated from the supply voltage. ** Attention: It is not allowed to connect loads of inductive and capacitive character, at the same time.
A Input is connected to the mains voltage potential.

00000000000000

Technical parameters	DA3－66M／230V	DA3－66M／120V
Inputs		
Input：	$6 \times$ contactless output， $2 \times$ MOSFET／channel	
Load type：	resistive，inductive，capacitive＊＊，LED，ESL	
Isolation BUS separated from all internal circuits and outputs：	reinforced insulation （Cat．Il surges by EN 60664－1）	
Insulation voltage between units power outputs：	max． 500 VAC	
Minimal controlled load：	10 VA	
Maximal controlled load：	DA3－06M／230V： 150 VA for each channel DA3－06M／ $120 \mathrm{~V}: 75 \mathrm{VA}$ for each channel possibility of parallel connection of outputs	
Inputs：	6 x galvanically separated	
Input voltage：	$20-230 \mathrm{AC}(50-60 \mathrm{~Hz}) / \mathrm{CC}$	
Isolation voltage：	between inputs max． 230 VAC／DC （basic insulation） to all other internal circuits： reinforced insulation：overvoltage category II	
Maximum cable length：	50 m	
Glow plug connection：	no	
Output indication ON／OFF：	6xyellow LED	
Device protection：	thermal／short－term overload／ long－term overload	
Communication		
Installation BUS：	bus	
Power supply		
Supply voltage by BUS／tolerance：	27VDC，－20／＋10\％	
Rated current：	100 mA （at 27 VDCl ，from BUS	
Status indication unit：	green LED RUN	
Supply voltage for power section／tolerance：	AC 230 V （ 50 Hz ）， $-15 /+10 \%$	AC $120 \mathrm{~V}(60 \mathrm{~Hz})$ ， －15／＋10 \％
Connection		
Terminal：	max． $2.5 \mathrm{~mm} / 1.5 \mathrm{~mm}^{2}$ with sleeve	
Operating conditions		
Air humidity：	max． 80%	
Operating temperature：	-20 to $+50^{\circ} \mathrm{C}$	
Storing temperature：	-30 to $+70^{\circ} \mathrm{C}$	
Protection degre：	1 P 20 device，IP40 mounting in the switchboard	
Overvoltage category：	II．	
Pollution degree：	2	
Operating position：	vertical	
Installation：	switchboard on DIN rail EN 60715	
Design：	${ }^{6}$－MODULE	
Dimensions and weight		
Dimensions：	$90 \times 105 \times 65 \mathrm{~mm}$	
Weigh：	320 g	

＊Attention：It is not allowed to connect loads of inductive and capacitive character，at the same time．

DA3－66M is a universal dimming 6－channels actuator，which is used to con DAB－66M is a universal dimming 6－channels actuator，which is Used to con－
trol the brightness of dimmable light sources such as ESL，LED and RLC with trol the brightness of
230 V power supply．
－The DA3－66M has 6 semiconductor controlled 230 V AC outputs．The maxi mum possible load is 150 VA for each channel．
－The individual outputs of the dimmer can be connected in parallel and thus increase the maximum output load at the expense of the number of
outputs． outputs．
Each output channel is independently controllable and addressable． The type of light source is set with a switch on the front of the device． By setting the min，the brightness potentiometer on the front of the device ．
in．be
Use the control buttons on the front panel to manually control the output． The actuator is equipped with electronic overcurrent and thermal protec
ion，which switches off the output in case of overload，short circuit，ove heating． During installation，it is necessary to leave at least half of the module space free on each side of the actuator for better cooling．
－DA3－06M is in 6－MODULE version and is intended for mounting in a switch
board on DIN rail EN60715． board on DIN rail EN60715．
－The dimmer has 6 galvanically separated inputs which can be used both to control the dimmer and as a binary input to the INELS system．
The the device supply（potential L ）must be protected with a safety device
corresponding to the power input of the connected load，e．g．with a quick－ correspondin
release fuse．

Connection

Types of connectable loads

type of source	symbol	description
resisive	(10)	ordinary light bulb，halogen lamp
${ }_{\text {inductive }}^{L}$	$\underset{\text { HAL } 12 \cdot 24 \mathrm{~T}}{\text { 田 }} \mathbf{I I}$	coiled transformer for low－voltage halogen lamps
$\underset{\text { copacive }}{C_{i}}$	D＝＝－で	electronic transformer for low－voltage halogen lamps
LED	A	LED lamps and LED light sources， 230 V
ESL	吅	dimmable energy－saving fluorescent tubes

LBC3－02M is an analog 2 －channels actuator designed to control dim－ mable ballasts of fluorescent lamps or other light sources controlled y signal $0(1)-10$ V DC
－In the iDM3，it is possible to set the output mode 0 （1）-10 VDC －During analog voltage output（ $001-10 \mathrm{~V}$ DC control，relay contact au
tomatically switches power supply to light ballast（ $0 \%=$ relay OFF， 1－100\％＝relay ON）
－LBC3－02M contains 2 independent analog voltage outputs（ 0 ） $1-10 \mathrm{~V}$ DC and their dependents 2 relays with potential－free contact． Maximum contacts load 16 A／4000 VA／AC1．
－Each of 2－channels is separately controllable and addressable
－LEDs on front panel signals status of each channel．
－With control buttons on the front panel，it is possible to change the status of each channel separately．
－LBC3－02M in 3－MODULE version is designed for mounting into
a switchboard／DIN rail EN60715．

Connection

RFDA-73M/RGB | Dimming actuator for LED (RGB) strips, 3-channels
RFDA-73M/RGB | Dimming actuator for LED (RGB) strips, 3-channels

Technical parameters
RFDA-73M/RGB

Outputs	
Dimmed load:	LED strip $12 \mathrm{~V}, 24 \mathrm{~V}$ with common anode; RGB LED strips $12 \mathrm{~V}, 24 \mathrm{~V}$ with common anode
Number of channels:	3
Rated current:	3x5A
Peak current:	$3 \times 10 \mathrm{~A}$
Switching voltage:	Un
Controlling	
RF by command foom the transmiter:	$866 \mathrm{MHz} / 868 \mathrm{MHz} / 916 \mathrm{MHz}$
Ext. signa:	$0-10 \mathrm{~V}, 1-10 \mathrm{~V}$
Range in open space:	up to 160 m
Output for RF antenna:	SMA connector*
Load capacity of output +10 V :	10 mA
Power supply	
Supply terminals:	Un+, GND
Supply voltage:	$12-24 \mathrm{VDC}$ stabilized
Max. power without load:	0.8 W
Connection	
Terminal:	max 1×2.5, max $2 \times 1.5 /$ with sleeve max. $1 \times 2.5 \mathrm{~mm}^{2}$
Operating conditions	
Operating temperature:	-20 to $+50^{\circ} \mathrm{C}$
Storing temperature:	$-30 \mathrm{to}+70^{\circ} \mathrm{C}$
Pollution degree:	2
Operating position:	any
Protection:	1 P 20 device, IP40 mounting in the switchboard
Installation:	into a switchboard rail to DIN EN 60715
Design:	3-MODULE
Dimensions and weight	
Dimensions:	$90 \times 52 \times 65 \mathrm{~mm}$
Weight:	130 g

* Max Tightening Torque for antenna connector is 0.56 Nm .

Attention:

The minimum distance between the controller (system unit) and the actua tor must not be less than one centimeter
Between the individual commands must be an interval of at least 1 s .

- The dimmer for LED strips is used for independent control of 3 single color LED strips or one RGB LED strip.
- The expanded selection of control modes enables it to be combined with a) controllers and system units iNELS RF Control
b) control signal $0(1)-10 \mathrm{~V}$
c) connecting to iNELS BUS using DAC converters.
- The unit's 3 -MODULE design with switchboard mounting enables
connection of dimmed load $3 \times 5 \mathrm{~A}$, which represents: connection of dimmed load $3 \times 5 \mathrm{~A}$, which represents: a) single-color LED strip 7.2 W (ELKO Lighting) - 3
b) RGB LED strip 14.2 W (ELKO Lighting) -10 m .
- 6 light functions - smooth increase or decrease with time setting $2 \mathrm{~s}-30 \mathrm{~min}$ - When switched off, the set level is stored in the memory, and when - When switched off, the set level is stored in the memory, s.
-The dimmer may be controlled by up to 25 -channels (1-channel repre sents 1 button on the controller).
- The power supply of the unit is in the range of $12-24 \mathrm{VDC}$, and is
indicated by a green LeD. indicated by a green LED.
- The package includes an internal antenna AN-I, in case of locating the unit in a metal switchboard, you can use the external antenna AN-E fo better signal reception.
- Signal range up to 160 m (in open space), if the signal is insufficient
between the controller and betwe controler and unit, use the signal repeater RFRP-20 or protocol component RFIO2 that support this feature.
- For components labelled as iNELS RF Control2 (RFIO2), it is possible to set the repeater function via the RFAF/USB service device. - Communication frequency with bidirectional protocol inELS RF Con
trol2 (RFIO2).

Connection

Control modes

RF RGB
Switch

RF RGB mode for controlling RGB LED Strips. In the RF RGB programming mode, colors are automatically assigned to individual transmitter buttons.
Note. The mode can be controlled by iHC apllication, EST3, and RFWB with RFFO2 protocol.

RF WHITE

Switch settings in MODE:

This works in a mode where it acts like three independent dimmers for $12-24 \mathrm{~V}$. Each
channel can be programmed indeendently of one another and has its own address channel can be programmed independently of one another and has its own address.
Note: The mode can be controlled by iHC apllication, EST3, WSB3, GSB3, IM3 module and RFWB with RFIO2 protocol.

RF COLOR

switch settings in MODE:

master

Control options of monochromatic RGB LED strips from iNELS BUS System

\qquad

www.inels.com

Smart home \& building solutions

The unit EMDC-64M is designed to control DALI electronic ballasts and DMX receivers from the iNELS system
EMDC-64M enables control of up to 64 independent electronic bal - EMDC-64M enables control of up to 64 independent electronic bal-
lasts DALI (Digital Addressable Lighting Interface) for fluorescent lamps, LEDs and other light sources. EMDC-64M also enables connectio tal Multiplex).
Control from iNELS BUS System via EBM BUS
DIP switches on the front panel to select the control interface (DALI
DMX). DMX).
Addressing of DALI ballast units can be done via the central unit and iDM3 software or via MINI USB on the front panel of the EMDC-64N Tha Dalicu functor software.
The required functionality is set in user project in iDM3 software.
DALI BUS power supply is $16 \mathrm{~V} / 250 \mathrm{~mA}$ via an EMDC- 64 M unit.
The system BUS EBM is galvanically separated from the BUSes DAL The system BUS EBM is galvanically separated from the BUSes DALI
DMX. Terminals for connecting the DALI BUS are equipped with short circuit and surge protection. - It is possible to connect up to 8 EMDC-64M units to one EBM BUS. -If this concerns the last unit on a system BUS EBM, it is necessary to ter minate the wire with a resistor with nominal resistance of 120Ω. The resistor is inside the unit, termination is made by shorting neighboring
terminals TERM and EBM+ terminals TERM and EBM
The BUS DMX must be terminated at its end by a resistor with nomina
resistive value 120Ω. The resistor for DMX BUS termination is on th resistive value 120Ω. The resistor for DMX BUS termination is on th
side of the EMDC- 64 M inside the unit, termination is performed by shorting adjacent terminals TERM and A.

- Updating the firmware of the EMDC-64M can be done through the central unit adn software iDM 3 orvia MINI USB on the front panel and
EMDC-64M Flasher software EMDC-64M Flasher software. Updating through MINI USB must be
done while system BUS EBM is disconnected.

adresses two types are necessary to distin-
${ }_{-}$- MASTER - this group includes sensors and detectors and one DAL branch can connect up to 4 DALI MASTER units
lighting intensity sensor DIS3-1
lighting intensity sensor DLS3-1
motion detector DMD3-1
-SLAVE - electronic lighting ballast
EMDC-64M in 3-MODULE design is designed for mounting in a control panel on a DIN rail EN60715.

Connection

For proper function of the detector it is necessary to eliminate all interference from heat or light sources in the sensing area.
The detector cannot be installed on an unstable or vibrating surface. Lower mounting height will reduce the overall size of the detection zone. The distance from the unit and the colour of the illuminated area affects

- DMD3-1 is a combined detector for ceiling mounting.

Possibilities to use the DMD3-1:

- sensor luminescenc
temperature measuring
- humidity measurement.
- The unit is equipped with two communication interfaces: installation iNELS BUS
DALI (a maximum 4 pcs of DMD3-1 or DLS3-1 units can be used on
- The motion detector is used to detect people moving in the area. Using the passive scanning infrared spectrum for detection.
Integrated luminescence sensor can be used for sensing current lum nescence at the point of installation of the unit. This information can b
used in tasks to maintain a constant luminescence. In space where it is used in tasks to maintain a constant luminescence. In space where it possible, thanks to the contribution of natural light from the outsid
adjust the artificial light, which can reduce energy consumption. - Setting the communication interface is done using the SET button,

The unit can be configured via the iNELS3 Designer \& Manager soft ware, which, among other things it is possible to: - set the desired function depending on detected motion resolve jobs based on the value of luminescence
enable/disable the alarm LED on the detector housing

- DMD3-1 detector is designed for indoor installation and is not intended for outdoor use
detector is powered directly via the iNELS BUS installation nominal 27 VDC) or DALI BUS (nominal 16 V DC).
Connection

Scanning range
Motion detector

Light sensor

\section*{| EAN code |
| :---: |
| DLS3: 8595988515506 |}

Technical parameters	DLS3-1
Inputs	
Range of measurement of ilghting:	1-100000 1x
Detection angle:	40°
Ouputs	
Indication red LeD:	identification DAL MASTER/setting indication
Indication green LED RUN:	communications/unit status
Communication	
Interface:	installation ineLs bus, DALI
Power supply	
From inels bus:	$27 \mathrm{VDC},-20 / 10 \%$
Rated current:	12 mA (27VDC)
From dali bus:	16 V (max. 23 V)
Rated current:	$20 \mathrm{~mA}(16 \mathrm{VDC})$
Dissipated power:	max.0.5 W
Connection	
Terminals:	max. 1×2.5, max. $2 \times 1.5 /$ /with sleeve max. $1 \times 2.5 \mathrm{~mm}^{2}$
Operating conditions	
Operating temperature:	-30 to $+60^{\circ} \mathrm{C}$
Storing temperatur:	-30 to $+70^{\circ} \mathrm{C}$
Protection degre:	1P65
Operating position:	vertical
Dimension and weight	
Dimension:	$96 \times 62 \times 34 \mathrm{~mm}$
Weight:	100 g

Weigh:
For properfunctis necessary to eliminate all sources of light interference in the sensing area

The luminescence sensor DLS3-1 is for sensing the current lumines cence at the point of installation of the unit.
The DLS3-1 sensor is equipped with two communication interfaces: - DALI (a maximum 4 pCs of DMD3-1 or DLS3-1 units can be used on one DALI bus).

- Information about the current value of the light intensity can be used in tasks of maintaining constant luminescence. In space where it it
possible, thanks to the contribution of natural ligh from the eutside possible, thanks to the contribution of natural light from the outsid
to adjust the artificial light, which can reduce energy consumption. to adjust the artificial light, which can reduce energy consumption.
Thanks to the DLS3-1 units cannot only be used in residential pro - Thanks to the DLS3-1 units cannot only be used in residential prowarehouses.
- The DLS3-1 unit is recommended to be installed so that the luminescence sensor for sensing faces down and should not be exposed to
the the direct radiation.
- Setting up a communication interface with DIP switches no. 1:
- in the upper position determines the communication interface DALI
-in the lower position determines the communication interface iNELS. - The DLS3-1 detector is powered directly via the iNELS BUS installation (nominal 27 V DC) or DALL BUS (nominal 16 V DC).
- The unit can be configured via iNELS3 Designer \& Manager software, which, amongst other things it is possible to:
- Set the desired functions according to the detected ilumination. - The sensing range is 1-100 000 lux.
- The DLS3-1 unit is supplied in IP65 and so can be installed in the out door environment.

Connection

Technical parameters FA3-612M

Input	
Analog inputs:	$3 \times$ voltage, current or temperature input
Number of inputs:	3
Galv. separation from inner circuits:	no
Diagnostic:	indication red LED overrange (exceeding the range, interruption of a sensor or overload of Uref output)
Common terminal:	GND
Converter resolution:	bits
Input resistance - for voltage ranges: - for current ranges:	approx. $150 \mathrm{k} \Omega$ 100Ω
Types of inputs/measuring ranges*:	Voltage (U): $0 \div+10 \mathrm{~V}(\mathrm{U}) ; 0 \div+2 \mathrm{~V}(\mathrm{U})$ Current (I): $0 \div+20 \mathrm{~mA}(\mathrm{I}) ; 4 \div+20 \mathrm{~mA}(\mathrm{I})$ temperature: input at ext. temperature sensor TC, TZ, Ni1000**, Pt1000**, Pt100** see accessories/ according to used sensor from $-30^{\circ} \mathrm{C}$ to $250^{\circ} \mathrm{C}$
Digital inputs:	3 x switching or expansion, positive logic (SINK)
Input voltage:	$20-240 \mathrm{VAC}(50-60 \mathrm{~Hz}$)/DC
Galv. separation from internal circuits:	yes
Common lead:	босомз
Outputs	
Analog:	4x (A_OUT1 - A_OUT4)
Voltage analog. output/max. Current:	4×0 (1) $-10 \mathrm{~V} / 10 \mathrm{~mA}$
Uref reference voltage outputs	
Voltage/Current Uref:	$10 \mathrm{VDC} / 100 \mathrm{~mA}$
Output overload indication:	red LED OVERLOAD
SSR (Electronic Relay):	4x (VaLVE1 - Valve2)
Switching voltage:	20-240VAC
Switching capacity:	480 VA
Peak current:	$20 \mathrm{~A}, \mathrm{t} 516 \mathrm{~ms}$
Output indication:	yellow LED
Relay 6A:	$4 \times($ FAN1-FAN3, RE)
Switching voltage:	$250 \mathrm{VAC}, 24 \mathrm{VDC}$
Switching capacity:	1500 VA/AC1; 300 VA/AC15; $180 \mathrm{~W} / \mathrm{DC}, \mathrm{AC3}$
Relay outputs separated from	reinforced insulation
from all internal circuits:	(Cat.II surges by en 60664-1)
Minimum switching load:	500 mW (12 V/10 mA)
Mechanical life:	10×10^{6}
Electrical life AC1:	6×10^{4}
Output indication:	yellow LED
Communication	
Installation BUS:	BUS
Status indication unit:	green LED RUN
Power supply	
Supply voltage/tolerance/ rated current:	$27 \mathrm{VDC} .-20 /+10 \%, 5 \mathrm{~mA}$
Supply voltage of power section (relay) tolerance/ nominal current:	AC $230 \mathrm{~V}(50 \mathrm{~Hz}), 15 /+10 \%$, 20 mA
Dissipated power:	max. 1 W

FA3-612M is a unit (actuator) designed to control fan coil units using nalogue/digital inputs and analog/relay outputs.
Analog inputs for temperature, voltage or current measurement (URef reference voltage can also be used).
The digital inputs are galvanically isolated with positive logic (Sink) in the $24-230 \mathrm{~V}$ AC/DC voltage range.
Analog outputs $0-10 \mathrm{~V}$.
Connection to the installation BUS.
Buttons for closing/opening the valve, fan and heating relay.
-The LEDs on the front panel indicate FAN, RE, Valve1, Valver, overRANGE, and OVERLOAD status.
FA3-612M in 6-MODULE version is designed for mounting into a switchboard, on DIN rail EN60715.

Technical parameters IM3-140M

Max. frequency pulse reading:	20 Hz
Outputs	
$\begin{array}{l}\text { Output (power supply } 12 \mathrm{~V} \\ \text { for sensors): }\end{array}$	$12 \mathrm{VDC} / 150 \mathrm{~mA}$

for sensors):	12VDC/150 mA
Communication	
Installation BUS:	BUS
Data	gransen LeD
Porindication:	

Power supply

Supply voltage/tolerance:	$27 \mathrm{VDC},-20 /+10 \%$
Dissipated power:	max. 1 W
Rated current:	$25 \mathrm{~mA}($ at $27 \mathrm{VDC)}$, from BUS
Rated current for full load on output 12 VDC :	
	100 mA
Connection	
Terminal:	max. $2.5 \mathrm{~mm}^{2} 1.5 \mathrm{~mm}^{2}$ with sleeve
Operating conditions	
Air humidity:	max. 80%
Operating temperature:	-20 to $+55^{\circ} \mathrm{C}$
Storing temperature:	-30 to $+70^{\circ} \mathrm{C}$
Protection degree:	1 P20 device, IP40 mounting in the switchboard
Overvoltage category:	11.
Pollution degree:	2
Operating position:	any
Installation:	into a switchboard rail to DIN EN 60715
Design:	3-Module
Dimensions and weight	
Dimensions:	$90 \times 52 \times 65 \mathrm{~mm}$
Weight:	104 g

nary input unit IIM $3-140 \mathrm{M}$ is designed to connect up to 14 devices with potentialless contact (such as switches, buttons of other designs. fre and glass detectors and others).
nputs $\operatorname{IN1}$ - IN7 can be balanced.
Contacts of external devices connected to the inputs of the drive ca be NO or NC - Input parameters are configured in the software iDM3. nputs must be configured as balanced or double balanced - in an in ternal Electronic security system configurated in iDM3 software. The unit generates a supply voltage of $12 \mathrm{VDC} / 150 \mathrm{~mA}$ for powering xternal detectors, so it can power PIR detectors, fire and gas detectors. Active use 12 VDC output for powering detectors increases the nom
nal consumption units from BUS (see technical data) nal consumption units from BUS (see technical data).
eur co bed for counting pulse of energy meters with pulse output.
3-140M in 3-MODULE is designed for switchboard mounting on DIN rail EN60715.

Balanced input

Simple:

Double:

Connection

Diagram

IM3-40B, IM3-80B | Binary input units

- Binary input units $\mathrm{IM} 3-40 \mathrm{~B}$ and $\mathrm{IM} 3-80 \mathrm{~B}$ are used for connection of 4
or 8 devices with potential-less contacts switches, buttons, switches or 8 devices with potential-less contacts (switches, buttons, switche of other design, PR detectors, fire and gas detectors, etc.).
Part of the inputs can be used as a balanced for alarm detectors:

- Contacts of external devices connected to the inputs of the unit can be NO or NC - input parameters are configured in the software iDM3. - Within the internal ESS configured in the IDM3 software, inputs must be set to balance or double balance.
The units generate a supply voltage of $12 \mathrm{VDC} / 75 \mathrm{~mA}$ for powerin external intrusion detectors, so they can power PIR detectors, fire and gas detectors.
- Active use 12 V D output for powering detectors increases the nomi - nal consumption of units from BUS (see technical data).
-The units can be used for counting pulses of energy meters with pulse output.
The units are equipped with a temperature input for connecting an external two-wire temperature sensor TC/TZ (see accessories). IM 1 -40B, $I \mathrm{M} 3-80 \mathrm{~B}$ in case type B are designed for mounting into a in
stallation box.

IM3-40B, IM3-80B | Binary input units

Connection

IM3-40B

IM3-80в

Balanced input

Simple:

Double:

Input units and converters

Technical parameters	TI3-40B
Input	
Temperature input for	4x inputs for external thermo sensor*
Emperature measurement range:	by type of sensor, prob from $-50^{\circ} \mathrm{C}$ to $400^{\circ} \mathrm{C}$
Converter resolution:	15 bit
Communication	
Installation BUS:	BUS
Status indication unit:	green LED RUN
Power supply	
Supply voltage/tolerance:	27VDC, -20/+10\%
Dissipated power:	max. 1 W
Rated current:	20 mA (at 27 V DC), from BUS
Connection	
Terminal:	$0.5 \mathrm{~mm}^{2}-1 \mathrm{~mm}^{2}$
Operating conditions	
Operating temperature:	-20 to $+55^{\circ} \mathrm{C}$
Storing temperature:	-30 to $+70^{\circ} \mathrm{C}$
Protection degree:	1 P 30
Overvoltage category:	1.
Pollution degree:	2
Operating position:	any
Instalation:	into installation box
Dimensions and weight	
Dimensions:	$49 \times 49 \times 13 \mathrm{~mm}$
Weight:	27 g

*TC, TZ, Ni1000, Pt1000, Pt100, see accessories

Connection options

-it is necessary to connect
terminals $T I N _B$ and COM
3-wire
connection of the sensor needs to connection of the sensor needs to
be done according to the technical
specifications

The unit is designed for connection of up to four ($T 13-40 B$) externa temperature sensors.
Units range TI3 support the connection of the following temperature sensors:

- TC/TZ- 2 -wire connections

Ni1000, Pt1000, Pt100- 2 -wire and 3 -wire connections

- Used in when necessary to take temperatures from different places (for example large floor heating - diagonal layout of sensors, floor
space indoorloutdoor temperature, technological device - boiler, so space, indoor/outdoor temperature, technological device - boiler, so
Star heating of units
if the supply icated by green RUN LED on the front panel: but there is voltage is connected (units are powered via the BUS, but there is no communication with the master, RUN LED is lit
continuously continuously.
the supply voltage is connected and the unit communicates via

Connection

T13-40B

TI3-60M

cal paramete	TI3-60M
Inputs	
Temperature input for temperature measuring:	$6 x$ input for external temperature sensor TC, TZ, Ni1000, Pt1000, Pt100 see accessories
Temperature measurement range:	by type of sensor, probe from $-50^{\circ} \mathrm{Co} 400^{\circ} \mathrm{C}$
Converter resolution:	15 bit
Indication of exceeding the range or interruption of the sensor:	6x red LED
Communication	
stallation BUS:	BUS
Status indication unit:	green LED RUN
Power supply	
Supply voltage/tolerance:	$27 \mathrm{VDC},-20 / 10 \%$
Dissipated power:	max. 1 W
Rated current:	45 mA (at 27 VDCD , from Bus
Connection	
erminal:	max. $2.5 \mathrm{~mm} 21.5 \mathrm{~mm}^{2}$ with sleeve
Operating conditions	
Operating temperature:	-20 to $+55^{\circ} \mathrm{C}$
Storing temperature:	-30 to $+70^{\circ} \mathrm{C}$
Protection degre:	IP20 device, IP40 mounting in the switchboard
Overvoltage category:	11.
Pollution degre:	2
Operating position:	any
Installation:	into a switchboard rail to DIN EN 60715
Design:	3-Module
Dimensions and weight	
Dimensions:	$90 \times 52 \times 65 \mathrm{~mm}$
Weight:	111 g

Connection options
2-wire
terminals TIN_B and COM
3-wire
connection of the sensor needs to be done according

Unit TIB-60M is designed to connect up to six external temperatur sensors.
nits range T13 support the connection of the following temperature sensors:
-TC/TZ- 2 -wire connections
Ni1000, Pt1000, Pt100-2-wire and 3-wire connections
It is used in cases where it is necessary to read the temperature, es floor/room, indoor/outdoor temperature, process equipment - boile, solar heating, etc.
Unit status is indicated by green RUN LED on the front panel:
if the supply voltage is connected (the unit is powered via the BUS) but there is no communication with the master, RUN LED is continuously.
if the supply voltage is connected and the unit communicates via standard BUS, RUN LED flashes.
The status on individual temperature inputs is indicated by the LIT- temperature sensor disconnection

- FLASHES - exceeding of the temperature rang

UNLIT- ol
T13-60M in 3-MODULE is designed for switchboard mounting on DIN rail EN60715.

Connection

Technical parameters	ADC3-60M
Input	
Analog inputs:	$6 \times$ voltage, current or temperature input
Number of inputs:	6
Galv. separation from inner circuits:	no
Diagnostic:	indication (exceeding the range, interruption of a sensor or overload of Uref output) by the applicable red LED
Common terminal:	сом
Converter resolution:	14 bits
Input resistance - for voltage ranges: - for current ranges:	approx. $150 \mathrm{k} \Omega$ 100Ω
Types of inputs/measuring ranges*:	Voltage (U : $0 \div+10 \mathrm{~V}(\mathrm{U}) ; 0 \div+2 \mathrm{~V}(\mathrm{U})$ Current (1): $0 \div+20 \mathrm{~mA}(1) ; 4 \div+20 \mathrm{~mA}(1)$ temperature: input at ext. temperature sensor TC, TZ see accessories/according to used sensor

Voltage**/current of Urefl: from $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Voltage" $"$ /current of Urefl:
10 or $15 \mathrm{VDC} / 100 \mathrm{~mA}$
Co

Installation BUS:
Unitstatus indication
Pawe supply

Power supply	
Supply voltage/tolerance:	$27 \mathrm{VDC},-20 /+10 \%$
Dissipated power:	max. 1 W
Rated current:	100 mA (at 27 V DC), from BUS
Connection	
Terminal:	max. $2.5 \mathrm{~mm}^{2} 1.5 \mathrm{~mm}^{2}$ with sleeve
Operating conditions	
Operating temperature:	-20 to $+55^{\circ} \mathrm{C}$
Storing temperature:	-30 to $+70^{\circ} \mathrm{C}$
Protection degree:	1 P 20 device, IP40 mounting in the switchboard
Overvoltage category:	1.
Pollution degree:	2
Operating position:	any
Installation:	into a switchboard rail to DIN EN 60715
Design:	3 -MODULE
Dimensions and weight	
Dimensions:	$90 \times 52 \times 65 \mathrm{~mm}$
Weight:	112 g

* selectable for each input/output individually by configuration in the user program iDM3. Min. supply voltage 24 VDC must be respected when
configuring 15 VDC and 100 mA consumption. configuring 15 VDC and 100 mA consumption. ** according to load Uref output.

ADC3-60M is an analog-to-digital converter and is equipped with 6 analog inputs.
Analog inputs serve to connect temperature sensors or analog sen sors that generates current or voltage signal.
The analog inputs have a resolution of a 14 -bit AD converter.

- The analog inputs have a common terminal COM.

Analog inputs/ouputs are configurable in iDM3 independently as volt age (U) or current (I) or temperature.
We recommend Clima sensor as a meteo station. There are four types five to eight outputs. The top series offers measuring of: rainfall, brightness, twilight, speed of wind, temperature and relative humidity. - The red LEDS in the front panel indicate exceeding the range, interrup tion of a sensor or overload of Uref output.
The temperature inputs at the top of the terminal are used to connect
the following temperature sensors: TC. TZ. the fow- M in 3 -modure sensors: T, T IZ.
ADCB-60M in 3-MODULE version is designed for mounting into a switchboard, on a DIN rail EN60715.

Connection

- DAC3-04M is a converter from a digital signal to an analog voltage signal.
The converter generates 4 analog voltage signals, which can be oper-
ated, according to type of controlled device ina a ange $0-10 \mathrm{~V}$ o $1-10 \mathrm{~V}$. ated, according to type of controlled device, in a range $0-10 \mathrm{~V}$ or $1-10 \mathrm{~V}$. trolled by this signal (dimmable ballasts of fluorescent lamps and other types of light sources - e.g. LED panels from the assortment o ELKO Lighting, dimming actuator for LED and RGB strips RFDA-73M/ RGB, thermo drives, servo drives, elements for measuring and regula tion and others).
- Range of output voltage is adjustable in iDM3.

Converter is equipped with a temperature input for connecting a 2 -wire external sensor TC/TZ (see accessories)
DAC3-04M in 3 -MODULE version is designed for mounting into a switchboard, on DIN rail EN60715.

Connection

Technical parameters	EST3
Display	
Type:	colored TFT LCD
Aspect ratio:	3:4
Visible area:	$52.5 \times 70 \mathrm{~mm}$
Backight:	active
Touchpad:	4 -wire resistive
Display:	3.5"
Number of points:	240×320
Color Depth:	16.7M (24 bit color)
Power supply	
Supply voltage/tolerance:	$27 \mathrm{VDC},-20 /+10 \%$
Dissipated power:	max. 2 W
Rated current:	150 mA (at 27 VDC)
Connection	
Connection:	terminals
Connecting conductors profil:	max. $2.5 \mathrm{~mm}^{2} 11.5 \mathrm{~mm}^{2}$ with sleeve
Operating conditions	
Operating temperature:	0 to $+55^{\circ} \mathrm{C}$
Storing temperature:	-20 to $+70^{\circ} \mathrm{C}$
Protection degre:	1 P 20
Overvoltage category:	1.
Pollution degree:	2
Operating position:	any
Instalation:	installation box
Dimensions and weight	
Dimensions:	$94 \times 94 \times 36 \mathrm{~mm}$
Weight:	120 g

* Ordering codes of all colours are available in the iNELS price list. ** Weight is listed with plastic frame.
- The control unit with touch screen EST3 is a suitable control element of the iNELS system in places where it is necessary to control multiple
devices. The unit replaces several drivers and enables minimizing the devices. The unit replaces several drivers and enables minimizing th
number of switches on the wall. - ESTT features $\mathbf{a} 3.5$ "color touchscreen with an aspect ratio of 3:4. The basic display resolution is 240×320 pixels. The color depth of 16.7 mil lion colors (24 bit color, True Color).
- Use the touch sensing surface to control configured buttons and symm
bols on the screen just by a light touch of a finger. Individual symbols bols on the screen just by a light touch of a finger. Individual symbols
on the screen are in the "Press" animated by the associated output in the system. EST3 has thes - buttons screen
emperature control screen
contri GB/RGBY/RGBW light sources screen
- Selecting the default screen is possible from the iDM3 software. For screen of buttons one of four different matrixes buttons can be
used $-2 \times 2,2 \times 3,3 \times 3$ and 3×4. Matrix selection can be done from the used $-2 \times 2,2 \times 3,3 \times 3$ and 3×4. Matrix selection can be done from the
iDM3 software. On the screen can then be used up to 12 buttons to control appliances or scenes.
- In the menu settings, directly on the EST3 component one of 48 pre pared symbols (for control of lighting, shading, scenes and other tech
nologies) can be assigned to each button or the buttons can be used nologies) can be assigned to each button or the buttons can be use
to enter text (number of characters depends on the matrix of buttons and therefore the size of the buttons).
- The temperature regulation screen enables coordination of the temperature of the selected heating circuit in a range of $\pm 3, \pm 4$ or $\pm 5^{\circ} \mathrm{C}$
(in relation to settings in iDM3) (in relation to settings in iDM3).
- The virtual wheel can be used for temperature correction, where you can drag your finger across the screen to control the temperature by The temperature cor
The temperature correction can also be used instead of the virtual
wheel symbols "+ and "- ".
- EST3 units do not have an integrated temperature sensor, or terminals for connection to an external temperature sensor. Within the iDM3 software, it is possible to assign any unit of heat input system iNELS. - The control RGB/RGBY/RGBW light sources screen allows you to com fortably control your RGB/RGBY/RGBW light sources and adjust the
luminous atmosphere as needed.
ar he pap ocpor
- For these RGB/RGBY/RGBW light sources, it is possible to use the con trols on the screen to adjust the color and brightness. It is also pos sible to directly set the $\mathrm{RGB} / \mathrm{RGB}$ /RGBW illumination light source into white color.
- Located in the left upper corner of the screen are 4 indicators that can
signal the status of any logical input/output in signal the status of any logical input/output in the iNELS system. - In iDM3 it is possible to define the displayed screen, the default screen,
matrix of buttons, type RGB/RGBY/RGBW and a correction range for matrix of buttons, type R
the temperature control.
- In the settings menu directly on the device EST3 it is possible to select the menu language, screen saver, sleep mode, brightness adjustment and symbols and texts for each button.
- EST3 are designed as LOGUS90 devices (EST3 however cannot be placed into multi-frames with other devices in this design) and are in
tended for mounting to installation box tended for mounting to installation box.

Connection

The screenshots

RGB lamp and light source control screen

- The RGB light sources control screen contains controls for managing the desired color and brightness of the RGB light sources.
gether and simulate the signal level on analog inputs R, G, B, B are bound together and simulate the signal level on analog inputs R, G, B and the resulting
brightness of the lamp is linked to a simulated analog input 0 to 100%. The RGB control display is comprised of several elements and buttons. a long press (touch) on the ON/OFF controls the central setting of RGB components and lamp brightness - on/off.
buttons R $_{20}$ Rin the upper half of the screen are for setting the lamp brightnest from 0 -10\% in 5% increments see adjustable er rightness indicator in $\%$. and accelerated lamp RGB control. The buttons have a lock function. When pressing 園 "white illumination" button, the analog inputs are automatically
set to the maximum value of individual color components, which appears set to the maximum value of individual color components, which appears
as a resulting white light at the RGB light source output when these components are mixed. Then simply adjust the brightness intensity at the output. When pressing (touching) the button "RGB-based color illumination", the "white illumination", button automatically unlocks, and the "RGB-based
color illumination" settings button locks. Now the values of analog inputs of color illumination" settings button locks. Now the values of analog inputs of
individual $R G B$ color components are preset according to the set cursor in the color wheel of the RGB scale on the EST3.

Heating control screen

- On the temperature control screen, the temperature of the selected heating circuit can be corrected in the range of $\pm 3, \pm 4$ or $\pm 5^{\circ} \mathrm{C}$.
The virtual wheel can be used for temperature correction, where you can drag , stead of the virtual wheel symbols "+ " and "

Buttons screen

- Programming iNELS system functions on each button on the screen units EST3 is the s
units.
- Buttons can be configured as well as other inputs in the system, both for short and also long press (> 1.5 s).
Buttons (icons) on the screen can be used instead of control outputs for visualiation of one of the digital outputs of the system iNELS. This is made possible by assigning buton to the desired output.
doing so, the button (icons) on the screen EST3 will become signal lamps (illuminated button), showing the state of the associated output.

Additional infromation

- Info gives information on the device and firmware version.

Clicking the icon brings you to the settings menu, used to edit the EST3. - The icon returns to the buttons panel.

The system time is displayed in the upper right corner of the screen.
All inputs and outputs on the EST3 unit can be freely programmed and parameterized using the iDM3 program.

hnical parameters	GSB3-40	GSB3-60	GSB3-80
Inputs			
Temperature measuring:	YES, built-in thermo sensor		
Scope and accuracy of temp. measuring:	Oto $+55^{\circ} \mathrm{C} ; 0.3^{\circ} \mathrm{C}$ from the range		range
Number of control buttons:	4	6	8
Inputs:	2xali/din		
Resolution:	according to the settings, 10 bits		
Ext. temperature sensor:	yes, the connection between AIN1/DIN1 and AIN2/DIN2		
Type of ext. sensor:	TC/TZ		
Temperature measurement range:	$-20^{\circ} \mathrm{Cto}+120^{\circ} \mathrm{C}$		
Temperature measurementacuracy:	$0.5{ }^{\circ} \mathrm{C}$ from range		
Outputs			
Indications:	pair of LEDS (red, green)		
Number of LED:	2	3	4
Communication			
Installation BUS:	BuS		
Power supply			
Supply voltage/tolerance:	27VDC, -20/+10\%		
Dissipated power:	max. 0.5 W		
Rated current:	$25-40 \mathrm{~mA}$ (at 27 VDC), from Bus		
Connection			
Terminals:	$0.5-1 \mathrm{~mm}^{2}$		
Operating conditions			
Relative humidity:	max. 80%		
Operating temperature:	-20 to $+55^{\circ} \mathrm{C}$		
Storing temperatur:	-30 to $+70^{\circ} \mathrm{C}$		
Protection degre:	1 P 20		
Overvoltage category:	1.		
Pollution degree:	2		
Operation position:	any		
Installation:	into installation box		
Dimensions and weight			
Dimensions:	$94 \times 94 \times 36 \mathrm{~mm}$		
Weight:	155 g		

- The wall controller with touch control series GSB3 is a design element (controller) in the system iNELS3 with elegant design and comfort
able controlling. Controllers are available in black (e.g. GSB3-40/B) and white (e.g. GSB3-40/W) variants.
- Between each pair of touch buttons there is available a pair of indicator LEDs (green, red) to signal not only the status of the controlled appliances, but also the status of any sensor or actuator in the system. - At the location of each touch button there is available a blue diode
signaling the touching of the given button. Touching may be signaled signaling the touching of the given button. Touching may be signaled
by a vibration impulse or sound tone - selectable in the software iDM3. - Controllers are 4 -channels (GSB3-40), 6 -channels (GSB3-60) and 8-channels (GSB3-80).
- All versions are in the same dimension as a basic modular wall-switch ($94 \times 94 \mathrm{~mm}$).
- Each controller is equipped with a thermo sensor. It is equipped with
two analog-digital inputs (AIN/DIN) and it is possible to two analog-digital inputs (AIN/DIN), and it is possible to connect two potentialless contact or an external temperature sensor TC/TZ. (for ex ample on floor temperature measurement).
- Controllers are equipped with an ambient light intensity sensor. From
the basic information from the sensor, it is possible to illuminate orien the basic information from the sensor, it is possible to illuminate orien tation blue diodes in the touch controls GSB3 or perform various action
in the software iDM3 e. illuminate light circuits in in the software iDM3, e.g. illuminate light circuits in a hallway, etc.
- Advantages over conventional switches/buttons include space sav-
ing, signaling of any output system, the ability to measure temperaing, signaling of any output system, the ability to measure tempera - Each channel (button) can control any actuator (appliance) in the sys tem. It is also possible to program various functions or macro (set of functions) to each button. This allows you to control several appliances with one button simultaneously.
- Each button (channel) can have different functional modes beside
lighting control: lighting control:
a) Classic wall-swit
- upper button ON, bottom button OFF
b) Button controller (impulse relay).
- first press ON, second press OFF.
- short pre
- Short press -
d) Time switch:
- ON after press, automatically OFF after set time.
e) Setting light scenes - for example: for watching TV:
shutters down
wall-lamps 50\% intensity
Design series LOGUSo offers glass frames in black and white color.
These frames goes perfectly with GSB3 wal These frames goes perfectly with GSB3 wall buttons

Technical parameters	WSB3-20	WSB3-20H
Inputs		
Temperature measuring:	yes, built-in temperature sensor	
Scope and accuracy of	0 to $+55^{\circ} \mathrm{C} ; 0.3{ }^{\circ} \mathrm{C}$ from the range	
Number of control buttons:	2	
Humidity measurement:	no	yes
Humidity measurementrange:	-	0 to 99% Relative humidity
Humidity measurementaccurancy:	-	$\pm 3 \%$ Relative humidity
Inputs:	2xali/din	
External temperature sensor:	YES, the connection between AIN1/DIN1 and AIN2/DIN2	
Type of ext. sensor:	TC/TZ	
Temperature measurement range:	$-20^{\circ} \mathrm{Cto}+120^{\circ} \mathrm{C}$	
Temp. measurement	$0.5{ }^{\circ} \mathrm{C}$ from range	
Outputs		
Indication:	two-colored LED (red, green)	
Number of LEDS:	1	
Communication		
Installation BUS:	bus	
Power supply		
Supply voltage/tolerance:	$27 \mathrm{VDC},-20 /+10 \%$	
Dissipated power:	max. 0.5 W	
Rated current:	25 mA (at 27 VDCC , from BUS	
Connection		
Terminals:	$0.5-1 \mathrm{~mm}^{2}$	
Operating conditions		
Operating temperature:	-20 to $+55^{\circ} \mathrm{C}$	
Storing temperature:	-30 to $+70^{\circ} \mathrm{C}$	
Protection degree:	1 P 20	
Overvoltage category:	II.	
Pollution degree:	2	
Operation position:	any	
Instalation:	into installation box	
Dimensions and weight		
Dimensions	$85.6 \times 85.6 \times 42 \mathrm{~mm}$	
- plastic:		
- metal, glass, wood, granite:	$94 \times 94 \times 36 \mathrm{~mm}$	
Weight:	55 g (without frame)	

- Wall controllers with low-upstroke control WSB3-20 and WSB-20H are
the main the main and most frequently used units (controller) in the iNELS system Built-in micro-bu
ling. ling.
- Wall switches WSB3-20 and WSB3-20H are available in 2 -channel - Double color (red/green) LED diode indicates either status of controlled appliances or status of any sensor or actuator in the system. Wall buttons in WSB3 series are compatible with both types of frames LOGUS ${ }^{\text {º }}(85.6 \times 85.6$ or $94 \times 94 \mathrm{~mm}$), therefore you can combine the
with double and triple frames and classic products of the series with double and triple frames and classic products of the series. - Each controller is equipped with a temperature sensor. It is also
equipped with two analog/digital inputs (AIN/DIN), which can be used to connect two potentialless contacts or one external temperature sensor TC/TZ (e.g. for measuring floor temperature).
- Wall button WSB3-20H is comparable to the WSB3-20 but additionally equipped with a relative humidity meter, and for better access of air to the sensor can be used with 99621 including accessories 99622 (Vista
MT) and 99,623 (Vista IRMT), instead of the housing cover 996017 . MT) and 99,623 (Vista RMT), instead of the housing cover 9960it. flexible and multifunctional. You can for example controll appliances by short and long push of the button (e.g.: dimming, shutter contro scenes).
- Each button can control any appliance in the system and can use a variety of centralized or time controlled features. Accordingly, the
customer can choose the simplicity/complexity of the operation. The big advantage is the possibility to change the method of control by only making software modifications without physical intervention into the structure of the building
Each button (fold) can have different functional modes beside light ing control:
a) Classic wall
- upper button ON, bottom button OFF
b) Button controller (impulse relay):
- first press ON , second press OFF
c) Dimmer
- short press -
d) Time switch:
- ON after press, automatically OFF after set time
e) Setting light scenes - for example: for watching TV:
main light 30% intensity
WSB3 in LOGUS ${ }^{90}$ design is designed for mounting into an installa tion box

Connection

- Wall mounted controllers with upstroke control WSB3-40 an ELS system. ELS system
- Built-in micro-switch with low upstroke offers elegant and pleasant - Controllers WSB3-40 and WSB3-40H are supplied with 4 -channels. - Two-coloured indication LEDs located in each controller, can signa the status of controlled appliances or the status of any sensor or ac tuator in the system.
- Wall buttons in WSB3 series are compatible with both types of frame LOGUS ${ }^{50}(85.6 \times 85.6$ or $94 \times 94 \mathrm{~mm})$, therefore you can combine the
with double and triple frames and classic products of the series
Each controller is equipped with a temperature sensor. It is also equipped with two analog/digital inputs (AIN/DIN), which can be used to connect two potentialless contacts or one external temperature sensor TC/TZ (e.g. for measuring floor temperature).
- Compared to standard wall buttons WSB3-20 and WSB3-20H are more flexible and multifunctional. You can for example controll appliances
by short and long push of the button (e.g.: dimming, shutter control, scenes).
- Each button can control any appliance in the system and can use a variety of centralized or time controlled features. Accordingly, the customer can choose the simplicity/complexity of the operation. Th big advantage is the possibility to change the method of control by into the structure of the building.
- Each button (fold) can have different functional modes beside light ing control:
a) Classic wall-switch:
- upper button ON, bottom button OFF
- first press ON, second press OFF
c) Dimmer:
- short press - ON/OFF

Nafter press, automatically OFF after set time
e) Setting light scenes - for example: for watching TV:

- shutters down
main light 30% intensity
- WSB3 in LOGUS ${ }^{90}$ design is designed for mounting into an installa tion box.

Technical parameters	GMR3-61
Inputs	
Temperature measuring:	YES, built-in temperature sensor
Scope and accuracy of	
temp. measuring:	0 to $+55^{\circ} \mathrm{C} ; 0.3^{\circ} \mathrm{C}$ from the range
Number of control buttons:	6
RFID readers	
Supported frequencies:	13.56 MHz
Card Type:	MIFARE Ultralight, DESFire 2 K (EVV), DESFire 4K (EVV1)
Outputs	
Indication:	3 pairs of LED (red, green)
Output:	$1 \times$ changeover $8 \mathrm{~A} / \mathrm{AgSNO}_{2}$
Acustic output:	piezo-changer
Switching voltage:	$230 \mathrm{VAC} / 30 \mathrm{VDC}$
Switching output:	2000 VA/AC1; $240 \mathrm{~W} / \mathrm{DC}$
Peak current:	$20 \mathrm{~A} / 235$
Insulation voltage between relay outputs and internal circuits:	
	3.75 kV, SELV according to EN 60950
Minimal switched current:	$10 \mathrm{~mA} / 10 \mathrm{~V}$
Switching frequency without load:	
	$300 \mathrm{~min}^{-1}$
Switching frequency withrated load:	
	15 min ${ }^{-1}$
Mechanical life:	1×10^{7}
Electrical life AC1:	1×10^{5}
Communication	
Installation BUS:	bus
Power supply	
Supply voltage/tolerance:	$27 \mathrm{VDC},-20 /+10 \%$
Dissipated power:	max. 2 W
Rated current:	50 mA (at 27 VDCC , from BUS
Connection	
Data:	terminals, $0.5-1 \mathrm{~mm}^{2}$
Network:	max. $2.5 \mathrm{~mm} / 1.5 \mathrm{~mm}^{2}$ with sleeve
Operating conditions	
Relative humidity:	max. 80%
Operating temperature:	-20 to $+55^{\circ} \mathrm{C}$
Storing temperature:	-30 to $+70^{\circ} \mathrm{C}$
Protection degree:	$1{ }^{1} 20$
Overvoltage category:	1.
Pollution degree:	2
Operation position:	any
Instalation:	into installation box
Dimensions and weight	
Dimensions:	$94 \times 94 \times 36 \mathrm{~mm}$
Weight:	155 g

- Wall RFID card reader GMR3-61 is designed for reading of contactles media (chip cards, key fobs, tags, etc.), which are used for controlling access to buildings or parts of buildings.
With the glass controller GMR3-61 users will appreciate the elegan design and the easy of control using six touch buttons, which can assigned different control functions lighting, shading, scenes, heating, etc.
-GMR3-61 a design element of the (control) system iNELS and is avail able in black (GMR3-61/B) and white (GMR3-61/W) variants.
GMR3-61 reader can be used to control the security system (locking
unlocking) access system (opening doors, gates, etc.) or appliances (based on assigned rights).
GMR3-61 supports RFID media with the carrier frequency of 13.56 MHz Supported card types MIFARE Ultralight, DESFFire 2K (EV1), DESFire $4 K$ (EV1).
- The GMR3-61 is also equipped with 8 A relay output with changeover contact AgSnO_{2}, which can be switched directly by reader (or by any
controller in the system). controlier in the system).
to indicate the status of the controlled appliance, or the state of any sensor or actuator in the system.
- Located on each touch button is a blue LED indicator, signalling the touch of a button. Touching may also be signalled by a vibrating puls or audible tone - optionally in the software iDM3.
- All variants of GMR3-61 are available in sizes of luxury controllers LOGUS ${ }^{90}(94 \times 94 \mathrm{~mm})$.
- GMR3-61 reader is equipped with a sensor of ambient light intensity Based on information from the sensor can switch the orientation of blue LEDs on the touch-pad GSB3 or perform various actions with the software iDM3, eg. To control the lighting circuits in the corridor and others.
PR3-61 cannot be installed into multiple frames they are designed for mounting into installation boxes.

Connection

Technical parameters	IDRT3-1
Inputs	
Temperature measuring:	YES, built-in thermo sensor
Range/accuracy of temp. measuring:	0 to $+55^{\circ} \mathrm{C} ; .3^{\circ} \mathrm{C}$ from range
Heating/cooling circuit correction:	$\pm 3, \pm 4$ or $\pm 5^{\circ} \mathrm{C}$
Manual control of heating/ cooling circuit:	$2 \times$ buttons
External temperature sensor:	YES, the connection between AIN1/DIN1 and AIN2/DIN2
Type of external sensor:	TC/TZ
Temperature measurementrange:	$-20^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$
Temperature measurementaccurac:	$0.5{ }^{\circ} \mathrm{C}$ from range
Communication	
Installation:	BuS
Display:	symbol display
Backight:	YES
Power supply	
Supply voltage/tolerance:	$27 \mathrm{VDC},-20 / 10 \%$
Dissipated power:	max. 0.5 W
Rated current:	20 mA (at 27 VDC), from BUS
Connection	
Terminals:	$0.5-1 \mathrm{~mm}^{2}$
Operating conditions	
Operating temperature:	0 to $+50^{\circ} \mathrm{C}$
Protection degre:	1120
Overvoltage category:	1.
Pollution degree:	2
Operation position:	vertical, downward with BUS terminal
Installation:	into installation box
Dimensions and weight	
Dimensions - plastic: metal, glass, wood, granite:	$85.6 \times 85.6 \times 50 \mathrm{~mm}$ $94 \times 94 \times 50 \mathrm{~mm}$
Weight:	76 g (without frame)

- IDRT3-1 is a digital wall temperature controller used to regulate the
temperature in a room. temperature in a room
- Using the IDRT3-1, it is possible to correct the given heating/cooling
circuit within a range of $+3,4+45^{\circ}$. circuit within a range of $\pm 3, \pm 4$ or $\pm 5^{\circ} \mathrm{C}$ (optional in SW iDM3). - The temperature controller is equipped with an integrated heat sen
sor used to measure the room temperature. It is also equipped with
twoanalog digital sor used to measure the room temperature. It is also equipped with
two analog digita inputs (AIN/DIN), which can be used to connect two potential free contacts or a single external temperature sensor TC/TZ (e.g. for measuring the floor temperature).
- The display shows the current temperature and after pressing one of two buttons under the display, you can control the desired temperature ate after pressing one of the buttons to activate the
Heating/co

$$
\begin{aligned}
& \text { Heating, } \\
& \text { iDM3, }
\end{aligned}
$$

- In the case of temperature correction within $\pm 3, \pm 4$ or $\pm 5^{\circ} \mathrm{C}$, this change is valid until the next time mark within the time schedule es tablished in iDM3.
- IDRT3-1 in design LOGU5 ${ }^{90}$ is intended for mounting into an installa tion box.

Connection

Hospitality Solution

Guest Room Management System

GDB3-10 | Glass door bell (info panel)

Technical parameters	GDB3-10
Inputs	
Temperature measuring:	YES, built-in temperature sensor
Scope and accuracy of temp. measuring:	0 to $+55^{\circ} \mathrm{C} ; .3^{\circ} \mathrm{C}$ from the range
Inputs:	2xAIN/DIN
Resolution:	by setting 10-bit
External temperature sensor:	YES, the connection between AIN1/DIN1 and AIN2/DIN2
Type of external sensor:	TC/TZ
Temperature measurement range:	$-20^{\circ} \mathrm{Cto}+120^{\circ} \mathrm{C}$
Temperature measurementaccurac:	$0.5^{\circ} \mathrm{C}$ from the range
Illuminance sensor:	1 to 100000 Lx
Buttons	
Number of Control buttons:	1
Type:	capacitive
Indication:	coloured illuminated symbol
Output	
Signalling:	Do Not Disturb, Make Up Room
Acustic output:	piezo-changer
Tactile output:	vibration motor
Communication	
Installation BUS:	bus
Power supply	
Supply voltage/tolerance:	$27 \mathrm{VDC},-20 /+10 \%$
Dissipated power:	max. 0.5 W
Rated current:	50 mA (at 27 VDCS , from BUS
Connection	
Terminals:	$0.5-1 \mathrm{~mm}^{2}$
Operating conditions	
Relative humidity:	max. 80%
Operating temperature:	-20 to $+55^{\circ} \mathrm{C}$
Storing temperatur:	-30 to $+70^{\circ} \mathrm{C}$
Protection degree:	1 P 20
Overvoltage category:	1.
Pollution degree:	2
Operation position:	on the wall, observing the conditions for correct installation of the thermostat
Installation:	into installation box
Dimensions and weight	
Dimensions:	$94 \times 94 \times 36 \mathrm{~mm}$
Weight:	154 g

Glass info panel GDB3-10 is part of a comprehensive series of glass NELS control units for guest room management system (GRMS), and
is used to indicate the status of guest requests "Do Not Disturb" and Make Up Room". Thanks to the capacitive tou
for the function of the bell.位 Engraving of symbels is possi-10/B) and white (GDB3-10/W) version. he client's requirements. The room number as well as the logo of the hotel can be also engraved on each component.
The "Do Not Disturb" or "Make Up Room" statuses can be entered by the hotel guest from a multi-functional touch panel EHT3, glass card holder GCH3-31, glass switch buttons GSB3-20/5, GSB3-40/S, GSB3 60/S or such GSP3-100 glass switch panel.
All versions are in the size of the module $(94 \times 94 \mathrm{~mm})$ from the line
of luxury switches and sockets 10 UUs ${ }^{\circ}$ and are therefore full in lie with the design of frames for the sockets of this series, where you can just as for the controllers choose white and black glass frames.

- Info panel GDB3-10 is equipped with a sensor for ambient light intensity. Based on information from the sensor it can e.g. switch the lighting circuits in the corridor.
ddividual symbols can be illuminated in one of seven colours - red reen, blue , ellow,
GDB3-10 are designed for mounting into an installation box

Connection

Technical parameters	GCH3-31
Input	
Illuminance sensor:	1 to 100000 Lx
Buttons	
Number of control buttons:	3
Typ:	capacitive
Indication:	coloured illuminated symbol
RFID readers	
Supported frequencies:	13.56 MHz
Card Type:	MIFARE Ultralight, DESFire 2K (EVV), DESFire 4K (EVV)
Outputs	
Signalling:	Do Not Disturb, Make Up Room
Output:	$1 \times$ changeover $8 \mathrm{~A} / \mathrm{AgSNO}_{2}$
Acustic output:	piezo-changer
Tactile output:	vibration motor
Switching voltage:	$230 \mathrm{VAC} / 30 \mathrm{VDC}$
Switching output:	2000 VA/AC1; 240 W/DC
Peak current:	$20 \mathrm{~A} / 35$
Insulation voltage between relay outputs and internal circuits:	3.75 kV, SELV according to EN 60950
Minimal switched current:	$10 \mathrm{~mA} / 10 \mathrm{~V}$
Switching frequency without load:	$300 \mathrm{~min}^{-1}$
Switching frequency with rated load:	10 min ${ }^{-1}$
Mechanical life:	1×10^{7}
Electrical life AC1:	1×10^{5}
Communication	
Instalation BUS:	bus
Power supply	
Supply voltage/tolerance:	$27 \mathrm{VDC},-20 / 10 \%$
Dissipated power:	max. 2 W
Rated current:	$100-120 \mathrm{~mA}$ (at 27 VDCl , from BUS
Connection	
Data:	terminals, $0.5-1 \mathrm{~mm}^{2}$
Network:	max. $2.5 \mathrm{~mm}^{2} / 1.5 \mathrm{~mm}^{2}$ with sleeve
Operating conditions	
Relative humidity:	max. 80%
Operating temperature:	-20 to + $55^{\circ} \mathrm{C}$
Storing temperature:	-30 to $+70^{\circ} \mathrm{C}$
Protection degree:	1 P 20
Overvoltage category:	II.
Pollution degree:	2
Operation position:	any
Installation:	into installation box
Dimensions and weight	
Dimensions:	$142 \times 94 \times 36 \mathrm{~mm}$
Weight:	210 g

- Glass card holder GCH3-31 is part of a comprehensive range of glas
iNELS control units for guestroom management system (GRMS). GELS control units for guest room management system (GRMS). - GCH3-31 serves for inserting the RFID card into the holder, whereby
the system acquires the information about whether the hotel guest is the system acquires the information about whether the hotel guest is
present in the room. With this information it is possible to ensure fo example Exit function with relation to energy savings in the absence of a guest in the room.
- Glass card holder is a design component of the iNELS system and is available in elegant black ($(\mathrm{GCH}-31 / \mathrm{B})$ and white ($(\mathrm{GCH3}-31 / \mathrm{W}$) version The GCH3-31 component is equipped with an RFID reader and is thus able to identify the specific hotel card inserted. Power saving function in the absence of a guest cannot be bypassed by simply inserting busi-GCH3-31 supports REID media with a carier frequency of 13.56 MH Supported card types are MIFARE Ultralight, DESFire 2K (EV1), DESFFir 4 K (EV1).
- The unit is also equipped with three touch buttons that can be used for example to set room status "Do Not Disturb" or "Make Up Room
This condition is then signalled to the glass card reader GCR3-11 or glass info panel GDB3-10 which are placed before the entrance to the room. Information may be sent directly to the hotel reception.
Engraving of symbols is possible upon a request. The logo of the hote
can be shown as well. Likewise, it is also possible to adat the card design. The GC
contact .
- Individual symbols can be illuminated in one of seven colours - red green, blue, yellow, pink, turquoise and white. GCH3-31 are designed for mounting into an installation box.

Connection
$\stackrel{\text { BUS. }}{\text { Bus. }}$ \qquad

$\underset{\substack{\text { Ean code } \\ \text { EHTI } \\ \text { White }}}{ }$

chnical parameters	EHT3
Display	
Type:	colored TFTLCD
Aspect ratio:	3:4
Visible area:	$52.5 \times 70 \mathrm{~mm}$
Backlight:	active
Touchpad:	4 -wire resistive
Display:	3.5"
Number of points:	240×320
Color Depth:	16.7 M (24 bit color)
Power supply	
Supply voltage/tolerance:	$27 \mathrm{VDC},-20 / 10 \%$
Rated current:	150 mA (at 27 VDC)
Connection	
Connection:	terminals
Connecting conductors profile:	max. $2.5 / 1.5 \mathrm{~mm}^{2}$ with sleeve
Operating conditions	
Operating temperatur:	0 to $+55^{\circ} \mathrm{C}$
Storing temperature:	-20 to $+70^{\circ} \mathrm{C}$
Protection degree:	1920
Overvoltage category:	1.
Pollution degree:	2
Operating position:	any
Installation:	installation box
Dimensions and weight	
Dimensions:	$94 \times 94 \times 36 \mathrm{~mm}$
Weight**	127 g

* Order codes of all colours are available in the iNELS price list.
** Weight is listed with plastic frame.

The control unit with touch screen EHT 3 is a suitable control elemen for iNELS in places where it is required to control multiple devices The unit replaces multiple controllers and allows minimisation of the number of switches on the wall.

- EHT3 control unit is also available in glass frames in black or white and is thus part of a comprehensive glass iNELS series of units for the man-
agement of the hotel rooms (GRMS). agement of the hotel rooms (GRMS)
The EHT3 is primarily designed to control hotel roms (Guest Bion Management System) but it can also be used it in other projects such Management Syster control panel. - EHT3 offers a user-friendly interfac
designed so that guests could easily create an environment that allows them to feel like home.
Changing the Graphical Interface is possible in consultation with the manufacturer to adapt it to specific hotel, office building and restaurant projects.
With the units it is possible to adjust the temperature (a version is avaiable with the possibilily to adjust the fan speed of fan coil units), light scenes, shading, music and it is also po
tion "Do Not Disturb" and "Make Up Room" tions from the LARA Radio player.
"Do Not Disturb" and "Make Up Room" informat aso of the rooms can be visualized on a GHR3-11 glass reader or GDB3glass info panel, which is located in the corridor at the entrance the room, and it is also possible to send the information of these events directly to the front desk to inform staff.
EHT3 features a 3.5 " color touchscreen with an aspect ratio of $3: 4$. Th basic display resolution is 240×320 pixels. The color depth is 16.7 mil-
lion colors (24 bit color, True Color). lion colors (24 bit color, True Color).
Using the sensor touchpad, buttons and symbols can be operated on he screen by a gentle touch of a finger. The symbols on the screen are HT3 design is drawn into a row of instruments LOGUS ${ }^{\circ}$ (EHT3 but you cannot install into multi-frames with other devices in this design) and
is designed for mounting into installation box.

Connection

Technical parameters	GRT3-50
Inputs	
Temperature measuring:	YES, built-in temperature sensor
Scope and accuracy of	
temp. measurement:	0 to $+55^{\circ} \mathrm{C} ; 0.3^{\circ} \mathrm{C}$ from the range
Humidity measurement:	YES
Humidity measurement range:	0 to 99% RH
Humidity measurementaccurancy:	$\pm 3 \%$ relative humidity
Inputs:	2x AII/DIN
Resolution:	by setting 10-bit
External temperature sensor:	YES, the connection between AIN1/DIN1 and AIN2/DIN2
Type of external sensor:	TC/TZ
Temperature measurement range:	$-20^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$
Temperature measurementaccurac:	$0.5{ }^{\circ} \mathrm{C}$ from the range
Buttons	
Number of control buttons:	5
Type:	capacitive
Indication:	coloured illuminated symbol
Display	
Display:	colored TFT, $20 \times 25.5 \mathrm{~mm}$
Resolution:	240×240 pixels
Outputs	
Acustic output:	piezo-changer
Tactile output:	vibration motor
Communication	
Installation BUS:	bus
Power supply	
Supply voltage/tolerance:	$27 \mathrm{VDC},-20 /+10 \%$
Dissipated power:	max. 0.5 W
Rated current:	85 mA (at 27 VDCl , from BUS
Connection	
Terminals:	$0.5-1 \mathrm{~mm}^{2}$
Operating conditions	
Relative humidity:	max. 80%
Operating temperatur:	-20 to $+55^{\circ} \mathrm{C}$
Storing temperature:	-30 to $+70^{\circ} \mathrm{C}$
Protection degree:	$1{ }^{2} 20$
Overvoltage category:	1.
Pollution degre:	2
Operation position:	any
Installation:	on the wall, observing the conditions for correct installation of the thermostat
Dimensions and weight	
Dimensions:	$94 \times 94 \times 36 \mathrm{~mm}$
Weight:	156 g

- Glass room thermo-regulator GRT3-50 is part of a comprehensive range of glass iNELS control units for guest room management system
(GRMS) and serves to regulate the temperature in the room. (GRMS) and serves to regulate the temperature in the room. GRT3-50 thermo-regulator has a display for displaying the current
room temperature and desired temperature. To adjust the require temperature, it is possible to use the touch buttons with symbols "and "+".
GRT3-50 is also suitable for controlling fan coils and fan speed can be easily adjusted by using the touch buttons with symbols. Thermo-regulator GRT3-50 also has a further two touch buttons whose function can be adjusted by software, for example fan coil on
off, heating/cooling or comfort temperature for heating or cooling. Thermo-regulator is equipped with an integrated temperature sensor for ambient temperature measurement.
- The glass room thermo-regulator is a design component of the
iNELS system and is available in elegant black (GRT3-50/B) and white iNELS system and is available in elegant black ($G R T 3$-50/B) and white (GRT3-50/W) version
Engraving of symbols is possible upon a request.
Individual symbols can be illuminated in one of seven colours - red GRT3-50 are designed formounting into
GRT3-50 are designed for mounting into an installation box

Connection

sate cofyurbe
bythe cusome

Technical parameters	GBP3-60
Inputs	
Inputs:	2xalindin
Resolution:	by setting 10-bit
External temperature sensor:	YES, the connection between AIN1/DIN1 and AIN2/DIN2
Type of external sensor:	TC/Tz
Temperature measurementrange:	$-20^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$
Temperature measurementaccurac:	$0.5^{\circ} \mathrm{C}$ from the range
Illuminance sensor:	1 to 100000 Lx
Buttons	
Number of control buttons:	6
Type:	capacitive
Indication:	coloured illuminated symbol
Outputs	
Acustic output:	piezo-changer
Tactile output:	vibration motor
Communication	
Instalation BUS:	bus
Power supply	
Supply voltage/tolerance:	$27 \mathrm{VDC},-20 /+10 \%$
Dissipated power:	max. 0.5 W
Rated current:	$25-50 \mathrm{~mA}$ (at 27 VDC), from Bus
Connection	
Terminals:	0.5-1 mm ${ }^{\text {2 }}$
Operating conditions	
Relative humidity:	max. 80%
Operating temperature:	-20 to $+55^{\circ} \mathrm{C}$
Storing temperature:	-30 to $+70^{\circ} \mathrm{C}$
Protection degree:	$1{ }^{2} 20$
Overvoltage category:	1.
Pollution degree:	2
Operation position:	any
Instalation:	on the wall, observing the conditions for correct installation of the thermostat
Dimensions and weight	
Dimensions:	GBP3-60/1F: $165 \times 94 \times 36 \mathrm{~mm}$, GBP3-60/2F: $236 \times 94 \times 36 \mathrm{~mm}$
Weight:	according to the selected module

* Order codes are available in the iNELS price list.

Glass bedside panel GBP3-60 is part of a comprehensive range of iNELS control units for guest room management system (GRMS),
Bedside panel is composed from 3 -MODULE, of which one is mod ule of touch buttons and two are modules to power for example mobile devices.
The GBP3-60 is available in several designs, making it a very flexible
and effective solution for a variety of projects. The following variants are available:

- leftright ver left/tight version
sides of the bed.
sides of the bed. 2-MODULE (IF)/3-MODULE (2F) design enables you to add a touch module with one or two power supply modules, network connec tion or multimedia.
-black/white elegant
GBP3-60 panel is equipped with six customizable touch buttons whose function can be software adapted to the requirements of the investor. Of course there is the possibility of using the "Master OFF" then you can select functions for switching and dimming of lighting nad
PP3-60 can bequiped with apon a request.
GBP3-60 can be equipped with a number of modules, for example. - power AC sockets: French, British, Multi, an
- other types of modules: USB, LAN, Media

The GBP3-60 panel is equipped with an ambient light sensor. - Individual symbols can be illuminated in one of three colours - red green and blue.
GBPP-60/7F is designed for mounting into a double mounting box, din box (distance between the centres of each of openings is 71 mm).

Connection

Technical parameters GSB3-20/S GSB3-40/S GSB3-60/S

- Glass touch controllers with symbols GSB3-20/5, GSB3-40/S and GSB3$60 / \mathrm{S}$ are part of a comprehensive range of glass iNELS control units of guestroadvantageously used in all projects for example as a part B3-40/S with four and GSB3-60/S six touch buttons whose functions can easily modify by the software. - Engraving of symbols is possible upon a request.
- Individual symbols can be illuminated in one of seven colours - red, green, blue, yellow, pink, turquoise and white.
- Glass touch panel is a design component of the iNELS system and is available in elegant black (GSB3-20/SB, GSB3-40/SB, GSB3-60/SB) and white (GSB3-20/WW, GSB3-40/SW, GSB3-60/SW) versions.
- All versions are in the size of the module $(94 \times 94 \mathrm{~mm})$ from the line of luxury switches and sockets LOGUS ${ }^{\circ 0}$ and are therefore fully in line with the design of frames for the sockets of this series, where you can just as for the controllers choose white and black glass frames.
- The glass touch controllers is equipped with an integrated tempera
ture sensor.It is a also equipped with two analog-to-digital inputs (AIN/ ture sensor. It is also equipped with two analog-to-digital inputs (AIN
DIN), which can be used to connect two potential-free contacts or one external temperature sensor TC/TZ (for example temperature measurement of the floor).
- The glass touch controllers are also equipped with a sensor of ambi-
ent light intensity. Based on information from the sensor it can switch ent light intensity. Based on information from the sensor it can switch backlight of symbols or perform various actions in the iDM3 software, for example also switch the lighting circuits in the room.
Adviling the state of any system output, the ability to measurs ace, sigture as well as the ability to connect external buttons or detectors. - Each button can control any actuator (appliance) in the system. Also, you can assign each button a different function or macro (set of func
tions). It is therefore possible to use one button to control several ap pliances at once.
on box , and GSB3-60/S are designed for mounting into an installation box.

$\underset{\substack{\text { EAN ode } \\ \text { CSSB320sw } \\ \hline}}{ }$

Connection

- Glass Touch Panel GSP3-100 is part of a comprehensive iNELS series of units for the management of the hotel rooms (GRMS), but the unit
can be used wherever it is required to control multiple devices from one location.
- GSP3-100 is equipped with ten touch buttons whose functions can easily be edited using the software.
- Engraving of different symbols on the unit is also possible upon a re quest. green, blue, yellow, pink, turquoise and white. Glass touch panel is a design component of able in elegant black (GSP3-100/B) and white (GSP3 System and is avail Compared with standard glass touchscreen (GS3-100/W) versions. - Compared with standard glass touchscreen controllers with symbols
GSB3-20/SB, GSB3-20/SW, GSB3-40/SB, GSB3-40/SW, GSB3-60/SB and GSB3-20/SB, GSB3-20/SW, GSB3-40/SB, GSB3-40/SW, GSB3-60/SB an
GSB3-60/SW the GSP3-100 is one and a half times the width. The touch panel is equipped with an integrated temperature sen also equipped with two analogue-to-digital inputs (AIN/DIN), which can be used to connect two potential free contacts or one external tempera ture sensor TC/TZ (e.g. For measuring the temperature of the floor). The touch panel is also equipped with an ambient light intensity sen
sor. Based on information from the sensor it can light up indicative illusor. Based on information from the sensor it can light up indicative illu
mination symbols or perform various actions with the iDM3 software, e.g. To also switch the lighting circuits in the room.

Advantages over conventional switches/buttons is saving space, sig-
nalling the state of any system output, the ability to measure temperanalling the state of any system output, the ability to measure tempera-
ture and an option to connect external pushbuttons or detetors - Each button can control any actuator (appliance) in the system. Also - Each button can control any actuator (appliance) in the syster. Also, button. It is therefore possible to use one button to control severa appliances.
GSP3-100 is designed for mounting into an installation box

Modern solutions for house and building projects

研

iNELS NIAGARA \& FLOWBOX

iNELS is fully compatible with BMS (Building Management System) Niagara and Flowbox platform, which offers a clear and efficient user interface for all - investors, management, users, operators and system integrators. iNELS with Niagara or Flowbox enables the integration of dozens of iNELS central units and all other protocols that are installed within buildings. There are controllers for the actual control of all prooperator's computer are used to supervise the operation of the system, receiving alarms and notifications and evaluation of historical data and graphs. Thanks to its wide range of possible operating pre-sets, BMS allows to achieve the most economical operation of the building. User interface uses a very efficient modern design language and using of templates greatly reduces the required integration time.

Buildings today are equipped with an array of systems to control HVAC (heating, ventilation and air conditioning), lighting, shading, security, GRMS (Guest Room Management System), energy manage ment, emergency lighting, fire alarms, CCTV, access control systems, elevators and other technologies. Effective integration and communication among the various systems in the building is critical to creating costs and reduce carbon dioxide emissions required for the operation of buildings. iNELS is a great solution for a variety of jobs, particularly in the areas of lighting, shading and GRMS (Guest Room Management System), and thanks to its modular and flexible topology it is used in commercial projects of hotels, office buildings, restaurants, wellness centres or manufacturing plants and warehouses.

Feature	iחives	niagara	(3) romeox
programming interface	\checkmark	\checkmark	\checkmark
virtual wire amount limitation	\checkmark	\times	\times
integration of mathematical or logical functions	\checkmark *	\checkmark	\checkmark
third-party interconnection (ASCII or software drivers)	\checkmark **	\checkmark	\checkmark
alarm / calls / text / e-mail notifications	\checkmark ***	\checkmark	\checkmark
support of ORACLE hospitality solution (Fidelio / Opera)	\times	\checkmark	\times
support of multiple CU3-OxM	\times	\checkmark	\checkmark
SCADA interface/support	\times	\checkmark	\checkmark
iNELS RF interconnection (RFIO or JSON)	\checkmark	\checkmark	\checkmark
iNELS Air interconnection (MQTT)	\times	\checkmark	\checkmark
HTML5 / JavaScript frontend dashboards and web supervisor	\times	\checkmark	\checkmark
multimedia integration (CCTV, audio, video)	\times	$\checkmark * * *$	\times
History logging	\checkmark	\checkmark	\checkmark
SQL interconnection	\times	\checkmark	\checkmark

[^0].... partial suppoort: cCTV only

CORE FEATURES:

A wide range of logical function blocks

BMS systems offers integrators dozens of function blocks for solving a variety of tasks within the building management. Function blocks are also divided into clear categories for easy navigation.

Supports virtually all universal protocols

Niagara and Flowbox are really versatile and supports dozens of universal and proprietary protocols, all the data points converted to a versal and proprietary protocols, all the data points converted to a

Multiplatform approach

By leveraging HIMLS Niagara and Flowbox ofers a simple interface face is available for all

Advanced visualization

Part of BMS systems is an extensive graphics library for creating modern and well-arranged visualizations depicting the current state of the controlled technology.

Creating graphs/trends

Part of the visualizations is graphs that enable easy insertion of the monitored data to a chart by using "drag and drop" allowing more transparent comparison of values and storing graphs for later use.

Customizable dashboards

Within the visualizations, dashboards are widely supported, which can also be accessed with dependant on the user rights and users are able
to adapt these dashboards, e.g monitored variables, according to their to adapt these dashboards, e.g. monitored variables, according to their different view and BMS freely enables effective adaptation.

Management of alarms and notifications

ophisticated alarm and notification management including the abil ity to send information via e-mail. Alarms can be backed up and user otes can be inserted to the individual alarms, for example on how to resolve the situation.

Energy analysis

nergy management and cost analysis is the most important part of building management. BMS systems offer huge tracking capabilities and evaluating parameters related to energy consumption.

Archive logs and historical data

All historical data and logs can be stored at freely selectable inter vals. The big advantage of BMS systems is that it allows all alarms, ogs, visualization, calendars and configuration to be done by remote using a standard Web browser.

Encrypted communication

Authentication requires the use of very strong credentials and all data communication is encrypted and this area is with the advent of the Internet of things (IOT) is given maximum attention.

Wide range of access for rights management

The big advantage of this solution is Niagara or Flowbox control ac ess based on user roles, which enables users to perform only th well-defined actions given. All changes and events are also logge and stored for possible evaluation.

Efficient navigation through the use of tags

Utilising tags streamlines the entire process, from configuration to management of the whole system. Using tags in combination with emplates can significantly reduce configuration time; tags facilitate access control based on user rights, naviga

Notebook

Tablet

Smartphone

BMS
Building management system

AVAILABLE PROTOCOLS:*

cal paramete	iTP 10"
Display	
Type:	color TFTLCD
Resolution:	1280×800 dots/16.7 M
Aspectratio:	16:10
Visible area:	$217 \times 135 \mathrm{~mm}$
Backight:	active (white LEDs)
Touch screen:	capacitive
Diagona:	10.1"
Contro:	touch
Viewing Angle:	$\pm 85^{\circ}$
Power supply	
Supply voltage:	PoE IEEE 802.3af (Active PoE)
Power consumption:	max. 12 W
HW	
CPU:	A20 ARM Cortex-A7 DUAL-CORE
RAM:	$1 \mathrm{~GB} \mathrm{DDR3}$ SDRAM
SD card:	Android
Network:	LAN: 10/100
AUDIO:	microphone, speakers
Connections:	PoE power connector - -JJ45
Operating conditions	
Operating temperature:	0 to $+50^{\circ} \mathrm{C}$
Storing temperature:	-20 to $+70^{\circ} \mathrm{C}$
Protection degre:	1 P 20
Overvoltage category:	III.
Pollution degre:	2
Operation position:	any
Installation:	Into the pre-prepared opening anywhere in the interior $(245 \times 160 \times 30 \mathrm{~mm})$ / with the appropriate installation frame as well as the glass
Dimensions:	$325 \times 174 \times 35 \mathrm{~mm}$
Weight:	1226 g

- 10 " touch panel designed to control iNELS.
- Black aluminum frame chassis in combination with glass.
- Integrated speakers and microphone are primarily designed for
intercom operation. intercom operation.
- Connection to the local area network can be done with Ethernet connection with PoE power supply - Active Poe (IEEE 802.3af).
Android for iHC (iNELS Home Control) applications.
Update applications over the Internet.
- The panel also includes a cover that also serves as a mounting frame.

The connection server is providing a communication environment be tween iNELS SUS System with the third party devices, for which their pro-
-The iHC application's environment enables us to control all these technologies from just one app.

- If the connection server is present in the installation, then it enables op-
tion for controlling the installation by application- lighting binds he tion for controlling the installation by application - lighting, blinds, heat
ing, etc. also IP cameras, air conditioning, recuperation or domestic aping, etc., also IP cameras, air conditioning, recuperation or domestic ap-
pliances Miele.
- It also allows the communication with the domestic voice intercom 2 N . It can also arrange the information from the weather station Giom or data from energy meters (electricity, water, gas), which is visualized in clea graphs.
The device connection server uses the Raspberry Pi hardware and the ps requires a license relative to the MAC address of the device.
- While connecting with the devices connection server, it's recommended to use an uninterruptible power supply (UPS), which ensures that, there
will be no power outage. will be no power outage.
- As a part of the package, we also included an SD card where we previously
installed Linux OS onit and - The configuratution is happening on software equipment.
fautt IP address is not fixed. (The IP Paddress web interface, where the de er and it's needed to be beown

These protocols are being translated:

- XML RPC (for communication with iHC applications, Connection Server controls access to the central unit of iHC applications and allows access to it from multiple devices).
- Miele@home 2.0 (for the communication with Miel Gatew yand the do mestic needs).
- VAPIX2, VAPIX3, ONVIF for cameras (which enables streaming up to 9 cam era pictures together, PTZ controlling, recording on a network drive). - Cooimaster for communication with AC Daikin VRV, Sanyo VRF, Toshiba Hitachi VRF).
- Atrea, AirPohoda (recuperation).
- NILAN (indoor climate solutions).
- SIP for domestic voice communication, for example: $2 N$ (a communication
between the iHC app or betweenindividual between the iHC app or between individual i iHC apps -VoolP).
Giom3000 (displaying values from the weather station in the iHC app and
using the information about the temperature, humidity and wind speed to an subsequent event, for example removing the shutters).

Infrastructure example

Technical parameters	eLAN-IR-003
Senzor IR- learning mode	
Senzor IR:	infrared sensor for learning $1 \mathbb{R}$ codes
The carrie I If frequency:	$20-455 \mathrm{kHz}$
Learning distance:	till 1 m
Outputs	
Output:	3x \|R transmitter
Connection:	3×3.5 Jack connector, cable length 3 m
Output indication:	$3 \times$ LED green status 1R1-R3
Range:	Up to 1 m from the device
Ethernet communication	
Indication of ETH operating status:	green LED
Indic. of ETH communication:	yellow LED
Communication interface:	10/100 Mbps (R/45)
Defaut IP address:	192.168.1.1
Power supply	
Voltage supply jim. current:	$10-27 \mathrm{VDC} / 200 \mathrm{~mA}$ (safe low voltage)
Connection:	Jack connector \varnothing 2.1 mm
Voltage supply indication:	green LED
Other data	
Other possibilities of wiring:	USB-B connector
Indication:	yellow USB LED status
Reset button:	settings to their default values
Power supply:	$230 \mathrm{VAC/12} \mathrm{VDC}$ supplied with the data logger
Operating conditions	
Operating temperature:	-20 to $+55^{\circ} \mathrm{C}$
Storage temperature:	-25 to $+70^{\circ} \mathrm{C}$
Protection degree:	1 P 30
Pollution degree:	2
Operation position:	arbitrary
Installation:	free
Design:	design box
Dimensions and weight	
Dimensions:	$90 \times 52 \times 65 \mathrm{~mm}$
Weight:	136 g

- The applications iHC-MAIR and IHC-MIIR provide universal control fo all Audio/Video devices (including air conditioning).
- The application is connected via smart phone connected to the smart IR box ELAN-R-003, which communicates with audio/video devices Via IR sensor.
The intuitive
control.
What all can you control? Home theater, TV, DVD or Blue Ray player amplifer, set-top box, satellite receiver, air-conditioning, projecto and more.
- It can control up to 100 arbitrary
that you normally have at
that you normally have at home.
With the scenes function you can perform multiple functions simul-
taneous a single click commal taneously by a single click command (e.g. you are going to bed you 1 . It is possible to integrate into a single application an unlimited number of f R boxes, meaning that in one application, you have control ove
the living romer the living room, children's rooms, etc.
It is also possible to control remotely from anywhere using a Wi-Fi net work (e.g. from work or vacation).
Thanks to auto-IP acquisition from the DHCP server, you need not set up a network (if you have no set fixed IP address).
threen connect three sensors to the smart IR box eLAN-IR-003 for three directions of control.

Example of connection

The front panel

The back panel
Receiver of fis signals

Controller options menu in the application

The eLAN-RS485/232 is used to communicate with devices communicating - The eLAN-RS485/232 is used to com municate with devices com municating
via the Modbus RTU protocol, with the converter acting as a master unit. - eLAN-RS485/232 is equipped with a web interface to configure the conne - eLAN-RS485/22
cted devices.

- Thanks to the web interface, the eLAN-RS485/232 can be used as a stand--alone device. - eLAN-RS485/232 is integrated into the Connection Server, which makes
it possible to control the connected technology through inELS Home it possible to control the connected technology through iNELS Home
Control (iHC). Thus, it is possible to control, for example, ventilation sysControl (iHC). Thus, it is possible to con
tems and heat recovery from NILAN.
It can be also used as a converter
like Jablotron or Paradox. nection to the RS485 serial line with A, B and GND terminals for cog diode to indicate the status. The front panel features an R145
The front panel features an RJ45 connector to connect to the Ethernet via a network cable.
The power supply of the eLAN-RS485/232 is possible via a $10-27 \mathrm{VDC}$
adapter (adapter included) or through a 24 VDC PoE, e.g. directly from a switch or PoE injector.
-The eLAN-RS485/232 requires the RS485 serial interface to be connec ted in line and to comply with all policy and installation requirements of this interface.

\section*{Example of connection} | ED indication Ethernet |
| :---: |
| communication |

$\underset{\substack{\text { Green } \\ \text { indep power } \\ \text { idicioton power supp }}}{ }$

[^1]Back panel

Interface Terminal 232

응ㅇ응

Technical parameters
LARA Radio

Internet Radio	
Supported data transer	
formats:	mp3, ogg, acc
Control/Settings	
Front pane:	touchscreen buttons
Communication Ethernet:	via PC setting up and communicating SW LARA Configurator
Button RESET:	restart product/ reset product to factory settings
Interface ethernet	
Communications interface:	10/100 Mbps
Connector:	RJ45
Max. cable length UTP with power:	50 m
Display	
Type:	color OLED
Resolution:	128×128 pixels
Visible sufface:	$26 \times 26 \mathrm{~mm}$
Power supply	
Supply:	Passive PoE 24 V DC/1.25
Min. input:	1.4 W
Max. input:	26 W (peak at maximum playback performance)
Amplifier	
Amplifier:	stereophonic class D with digital output control
Max. amplifier output:	$2 \times 10 \mathrm{~W} / 8 \Omega$
Inputs/Outputs	
Microphone:	No
Audio input:	3.5 stereo jack
Audio output 1:	terminals LINE OUT (used for external amplifere)*
Audio output 2:	terminals OUT L/OUT R (speaker output from int. amplifier)
Connection	
Terminal block:	$0.5-1 \mathrm{~mm}^{2}$
Other data	
Working temperature:	0 to $+55^{\circ} \mathrm{C}$
Protection degree:	1920
Overvoltage category:	1.
Pollution degree:	2
Installation:	in an installation box
Dimensions and weight	
Dimensions:	
- plastic:	$85 \times 85 \times 46 \mathrm{~mm}$
- metal, glass, wood, granite:	$94 \times 94 \times 46 \mathrm{~mm}$
Weight:	209 g (plastic frame)

*The cable from the LINE OUT terminals must be shielded, max. lengt should not exceed 5 m .

- A music and internet radio player - all in the dimension of a switch and a luxurious LOGUSo design.
- LARA Radio - when connected to the Internet, it can play streaming radio stations and you can store up to 40 of them. But you can also
select from thousands of radio stations from across the globe, which provide data for correct connection.
- LARA Radio can play content from an external music source, which can be an smart phone or e.g. an MP3 player. These devices are con nected to a 3.5 mm stereo jack audio input, located underneath the
front panel. frome
tons availa The basic devi, or LARA Dio.
are performed via the dise (network connection, language, audio input) pacity buttons on the device front cover. Further settongs (selectio of stations, connection with the server. updating firmware, etct) are of stations, connection with the server, updating firmware, etc.) ar
configured via computer and the software LARA Configurator.
- LARA Radio is equipped with an OLED colored display with the size of $1.5^{\prime \prime}$. The display also shows basic information about playing music, which also serves the orientation in the menu settings, etc.
- LARA Radio has an integrated amplifier with $2 \times 10 \mathrm{~W}$ output, thus greatly facilitating device installation in places where such outpu
suffices. LARA is used e.g. to provide premium sound to the kitchen suffices. LARA is used e.g. to provide premium sound to the kitchen,
bathrooms, waiting rooms, offices, reception desks, entrance halls, operating rooms or wellness facilities.
LARA is powered by PoE with maximum voltage level 27 V DC 1000 mA . So connecting and communicating with just one cable (UTP) is a major advantage.
- For LARA, an entire series of accessories is ready for connection (POE stallation (cables, box, etc.).
- Complies with standards IEEE 802.3 3 (100BASE-Tx).

Automatic cable crossing detection of Ethernet cable - MDIX.

ARA Intercom offers users 5 different functions and expand even ore options to Lara Radio - music players and internet radio station within the range of LOGUSo switch designs.

- LARA Intercom provides an extra functionality and videophone intercom. Thanks to videophone function, now it is possible to have a voice communication between LARA and the sound of the door (IP Intercom) see that on LARA display as part of this function which increases the ecurity feeling and safety besides of course, the comfort for the use ARA Intercom is equipped with an OLED colored display with the size of $1.5^{\prime \prime}$, which is used to transfer images and sounds from the doo camera properly. The display also shows basic information about playing music, which also serves the orientation in the menu settings, etc. The intercom function can also be used for communications between all the family members throughout the whole house, thanks to two VA ported by LARA Radio - when connected to the Internet, it can play streaming radio stations and you can store up to 40 of them. But yo can also select from thousands of radio stations from across the globe which provide data for correct connection.
LARA Intercom can play content from an external music source, which
can be an smart phone or eg an MP3 player These nected to a 3.5 mm stereo jack audio input, located underneath th front panel. You can also use LARA for streaming your favorite music from Spotify Premium.
- Touch control is performed on the device front panel (six capacity but tons available), or LARA Dio.
- The basic device settings (network connection, language, audio input)
are performed via the display and a simple are performed via the display and a simple menu controlled from ca
pacity buttons on the device front cover. Further settings (selection of stations, connection with the server, updating firmware, etc.) ar configured via computer and the software LARA Configurator.
- LARA Intercom has an integrated amplifier with $2 \times 10 \mathrm{~W}$ output, thus greatly facilitating device installation in places where such output
suffices. LARA is used e.g. to provide premium sound to the kitchen suffices. LARA is used e.g. to provide premium sound to the kitchen,
bathrooms, waiting rooms, offices, reception desks, entrance halls, operating rooms or wellness facilities.
LARA is powered by PoE with maximum voltage level $27 \mathrm{~V} D$ 1000 mA . So connecting and communicating with just one cable (UTP) is a major advantage.
- For LARA, an entire series of accessories is ready for connection (Po) seakers (in a frame, walls or ceilings) and in
- Automatic cable crossing detection of Ethernet cable - MDIX.

Inputs/Outputs	
Microphone:	YES
Audio input:	3.5 stereo jack
Audio output 1:	terminals LINE OUT (used for external amplifer)*
Audio output 2:	terminals OUTL/OUTR (speaker output from int. amplifier)
Connection	
Terminal block:	$0.5-1 \mathrm{~mm}^{2}$
Other data	
Working temperature:	0 to $+55^{\circ} \mathrm{C}$
Protection degre:	1 P 20
Overvoltage category:	1.
Pollution degree:	2
Installation:	in an installation box
Dimensions and weight	
Dimensions:	
- plastic:	$85 \times 85 \times 46 \mathrm{~mm}$
- metal, glass, wood, granite:	$94 \times 94 \times 46 \mathrm{~mm}$
Weight:	209 g (plastic frame)

The cable from the LINE OUT terminals must be shielded, max. length should not exceed 5 m .

Touchscreen operation

Applications control

Operations, using the application for, LARA Dio and iNELS Home Control for Android and iOS smartphones and tablets

Wiring example

Speakers and cables

AUX CABLE LARA (LARA CINCH CABLE)
Used to connect LARA with exter. amplifier.
Reduction 4pin from LARA LINE OUT to $2 \times$ CINCI plug into amplifier, length $2 \times 20 \mathrm{~cm}$.
 box (e.g. KU-
$24 \mathrm{~V} / 10 \mathrm{~W}$.

AUX CABLE LARA (LARA AUDIO CABLE)
Used to connect LARA with external music source Used to connect LARA with external music sourc
(smart phone mp3 player). The length is 20 cm terminated with $2 \times$ stereoo jack 3.5 mm .

CELLING SPEAKER
Speaker is suitable for the installation in suspended
ceilings and hoollow wals Speaker is suitable for the instalation in suspended
ceiling and hollow walls. Mounting holo diameter
143 mm , Power $8 \mathrm{~W}, 32 \Omega$ speaker impedance. 7502
CBR

SURFACE SPEAKER
Two-way speaker inten
Two-way speaker intended for mounting in a ceiling 75106
or on the walls: Power $15 \mathrm{~W} .32 \Omega$ speaker impedance, or on the walls: Power $15 \mathrm{~W}, 32 \Omega$ speaker impedance, CB
dimensions $270 \times 183 \times 37 \mathrm{~mm}$. Color: White
4 NETWORK CABLE, 0.2 m
NETWORK CABLE, 0.2 m
Flat white LAN cable CAT5, length 20 cm , terminate
with $2 \times$ RIL5 Flat white LAN cable
with $2 \times$ R 145 plugs.

NETWORK CABLE, 1 m
Flat white LLN cable CAT5, length 1 m , terminated Flat white LAN cable
with $2 \times$ R 445 plugs.

Power supply and network

WI-FI BRIDGE
Used for LARA wir
sed for LARA wireless connection via Wifi network.
PoE SWITCH - $5 \times$ RJ45
Provides LAN connectivity and PoE power supply for
up to $5 \times$ LARA.

PoE SWITCH - $8 \times$ RJ45
Provides LAN and connected PoE of up to $8 \times$ LARA.
In addition to the 24 V Po also offers a 48 V PoE for the power supply of 2 N .
nas external storage Two-chamber NAS servert with the function of hosting,
sharing and data security.

Power sets

0	1-FRAME	90910 TBR
0	2-FRAME	90920 TBR
0×0	3-FRAME	90930 TBR
OCDC	4-FRAME	90940 TBR
00090	5-FRAME	90950 TBR
$[3]$	SURFACE MOUNT BOX	10976 ABR
0	INSTALLATION BOX 1 GANG (KP 67/2)	6705

\qquad

2N Helios IP Base

Replaces the original application:
iNELS Home Control Mobile and iNELS Home Control Tablet (for CU3 series and Connection Server)
iNELS Home RF Control (for eLAN-RF)
iNELS Home Control IR Mobile (for eLAN-IR)
LARA Dio (for LARA player)
and combines them into one.
This revolutionary application allows not only the control of all the above devices and elements, but also the setting of simple events (scenes) directly by the user - across iNELS systems.
It also integrates the control of 3rd party devices (cameras, intercoms, home appliances). Allows direct connection to the device or connec tion via iNELS.Cloud, including voice assistant control.
New features are configurable notifications, an optional dashboard or definable roles (rights) for individual users.

Electroinstallation
inEE inELS

HVAC
\square Audio

$3^{\text {rd }}$ party

Energy management

Voice assistants

Others

Lighting control Garage doors and gates Switching appliances RGB bulbs and LED strips Scenes
Detectors/sensors

Heating

Air conditioning Recuperation

LARA

nas

Cameras
Weather station
Intercoms
Home appliances

Energy dashboard
History report (charts \& graphs)

Google Home

Amazon Alexa

Automation

Notification
Widgets
Favourites/overview
Log history
eLAN-IR
Geolocation
Weather data
Conrad Connect
Users management

Silver	Gold	Platinum
\checkmark	\checkmark	\checkmark

Overview
Absolute control over the state of all technologies.

Colour setting Easy adjustment of the light scene with one touch - switching, dimming, colour.

Device list Control the device from anywhere

Rooms management Settings according to individual rooms.

Shutters/Blinds Possibility of individual or joint control of shading technology.

Temperature
You can set the temperature in each room exactly as you like.

Colour:	white RAL 9003	white RAL 9003
Dimensions $\mathrm{h} / \mathrm{w} / \mathrm{d}$:	$63 \times 42 \times 45 \mathrm{~mm}\left(2.5 \times 1.7 \times 1.8 .^{\prime \prime}\right)$	$63 \times 42 \times 45 \mathrm{~mm}\left(2.5 \times 1.7 \times 1 . .^{\prime \prime}\right)$
Connection size:	M $30 \times 1.5 \mathrm{~mm}$ ($\left.1.2^{\prime \prime} \times 0.06^{\prime \prime}\right)$	M30 $\times 1.5 \mathrm{~mm}\left(1.2^{12 \times 0.06) ~}\right.$

AN-I | Internal antenna

E
into plastic switchboard

- rod angle, without cable
- sensitivity 1 dB
- the internal antenna is included in the standard package

Thermodrive is intended for opening or closing valves in heating,
cooling or air conditioning systems. It is also suitable for use in a floor cooling or air conditioning systems. It is also suitable for use in a floo ng cooling manifolds.
And for 230 V and 24 V . movement so that the valveration of thermodrive mechanism $=$ its heating element with expansion material, which expands due to tom heating element with expansion material, which expands due to tem
perature changes in the supply voltage Thermodrive is maintenance-free and wor
-Thermodrive is fitted with a metal nut M30 $\times 1.5$, thanks to which it be comes a 100% fixed part of the valve with this corresponding thread
size after installation size after installation.
-The stated nut size predetermines the use of a thermocouple with valves from manufacturers such as Herz, HoneyWell, Danfoss, Oven trop and others.

- Telva thermo drive:

 - is characterized by absolutely quiet and maintenance-free operation- is designed for installation - control of heating and cooling systems - method of mounting the actuator on the controlled valve using an M30 1.5 nut

- any working position

- Type of use:
-Floor heating - the RFTC-50/G wireless controller measures the room temperature and, based on the set program, sends a command to the RFSA-66M switching element to open/close the TELVA thermo drive on the distributor.

AN-E | External antenna
for mounting into metal switchboard
cable length $3 m$
sensitivity 5 dB
the external antenna AN-E is supplied on request only
$\underset{\substack{\text { EAN code } \\ \text { Exemana anemna AN:E } 8595188900121}}{ }$
TC, TZ, Pt100 | Thermo sensors

Technical parameters	TC	TZ	Pt100
Range:	-20 to $+80^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{Cto}+125^{\circ} \mathrm{C}$	$-30^{\circ} \mathrm{Cto}+200^{\circ} \mathrm{C}$
Scanning element:	NTC 12k	NTC 12K	Pt100
Tolerance:	$\pm\left(0.15^{\circ} \mathrm{C}+0.002 \mathrm{t}\right.$ (t)	$\pm\left(0.15^{\circ} \mathrm{C}+0.0021 t^{(1)}\right.$	$\pm\left(0.3^{\circ} \mathrm{C}+0.0055 \mid\right.$ \|
In iririn water:	(r0.5) ≤ 185	(r65) $625 / 8 \mathrm{~s}$	(70.5) -17s
In airin water:	(r0.9) ≤ 485	(t95) $2165 / 23 \mathrm{~s}$	(r0.9) -/19s
Cable material:	PVC unshielded, $2 \times 0.25 \mathrm{~mm}^{2}$	PVC	$\begin{aligned} & \text { shielded silicone } \\ & 2 \times 0.22 \text { mm } \end{aligned}$
Terminal material:	polyamid	stainesssteel	copper
Protection degre:	${ }^{1867}$	${ }^{\text {P667 }}$	${ }^{1867}$
Electrical strength:	2500 vac	2500 vac	2500 vac
Insulation resistance:	>200 maat5ovoc	>200 MRat5 500 voc	>200 M2at5ovoc
Types of temperature sensors:			
$\begin{aligned} & \text { - - weighth: } \end{aligned}$	t-0	tz-0	
	100 mm	110 mm	
	59	4.59	
- length: - weight:	TC-3	TZ-3	Pt100-3
	3 m	3	3 m
	709	1069	689
- length: - weight:	tc-6	Tz-6	Pt100-6
	6 m	6 m	6 m
	1309	2169	149 g
	T-12	Tz-12	Pt100-12
- length:	12 m	12 m	12 m
-weight	2509	4189	249 g

т65 (95): time, which sensor needs to heat up on 65 (95) \% of ambient tem- perature of environment, in which is located.

Sensor photo
TC

?

TZ

Pt100

Thermister temperature sensors are made of Negative Temperature Coefficient (NTC) embedded in a PVC or metal sleeve with a thermally-conductive sealer.

- Sensor TC
- Sead-in cable to sensor TC is made of wire CYSY $2 \mathrm{D} \times 0.5 \mathrm{~mm} / 0.02^{\prime \prime}$. - Sensor TZ
- cable VO3SS-F $2 \mathrm{D} \times 0.5 \mathrm{~mm} / 0.02^{\prime \prime}$ with silicone insulation for use in high temperature applications.
-silicone insulation for use in high temperature applications.
- Sensor Pt100
a case.
- temperature sensors can be connected directly to the terminal block - cable lengths can not be changed, connected or modified.

Resistive values of sensors in dependance on temperature

Temperature $\left.{ }^{\circ} \mathrm{C}\right)$	Sensor NTC $(\mathrm{K} \Omega)$	Sensor Pt100 (Ω)
20	14.7	107.8
30	9.8	111.7
40	6.6	115.5
50	4.6	119.4
60	3.2	123.2
70	2.3	127.1

Tolerance of sensor NTC 12 K K is $\pm 5 \%$ by $25^{\circ} \mathrm{C} / 77^{\circ} \mathrm{F}$
Long-term resistence stability by sensor Pti00 is
左
Diagramm of sensor warm up via air

PVC -reaction to water temperature from $22.51^{\circ} \mathrm{C}$ to $58^{\circ} \mathrm{C}$.
Silicone- reaction to water temperature from $22.5^{\circ} \mathrm{C}$ to $63.5^{\circ} \mathrm{C}$.
Drawing
$\varnothing 8 \mathrm{~mm}$

| Minimum load | | | Minimum load | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Relay contact | mV | V / mA | | Relay contact | mV | V / mA |
| AgSnO_{2} | 1000 | $10 / 100$ | | AgNi | 300 | $5 / 10$ |

GCR3－11，GCH3－31，GMR3－61，SA3－02B，SA3－06M，SA3－012M，WMR3－21									
Type ofload	$C_{\cos 820,95}$	(M) AC2	$-\mathrm{M}$	ACsa uncompensated				$\sim_{\text {AC7b }}$	$\begin{aligned} & -\square- \\ & \text { AC12 } \end{aligned}$
Contact material AgSnO_{2} ，contact 8 A	$250 \mathrm{~V} / 8 \mathrm{~A}$	250V／2．5 A	250V／1．5A	230 V 1.5 A （345VA）	$230 \mathrm{~V} / 1.5 \mathrm{~A}(345 \mathrm{VA})$ till max output $\mathrm{C}=14 \mathrm{uF}$	250 W	250V／4A	250V／1 A	250V／IA
Type ofload	$\frac{3 \xi \in A}{A C 13}$	$\overline{\mathrm{AC} 14}$	$\begin{aligned} & \overline{\sqrt{40-1}} \\ & \text { AC15 } \end{aligned}$	$\stackrel{\square}{\square}$	$-$	$-$	$\stackrel{\square}{-\square}$	$\bar{\sim}$	$\underset{\substack{\text { DC14 }}}{ }$
${ }_{\text {a }}^{\text {Cosharact material }}$	\times	$250 \mathrm{~V} / 3 \mathrm{~A}$	$250 \mathrm{~V} / 3 \mathrm{~A}$	24V／8 A	24V／3 A	24V／2 A	24V／8 A	24V／1 A	\times

LBC3－02M，SA3－04M，SA3－022M（RE7－RE－10），EA3－022M（RE7－RE－10），JA3－018M（U／D1－U／D9）

Typeofload		$-\mathrm{M}$	$-$	ACsa uncompensted			$\begin{aligned} & 3\|\xi\| \xi \\ & \text { Ac6a } \end{aligned}$	$\sim_{\text {AC7b }}$	$\stackrel{\rightharpoonup}{\text { AC12 }}$
Contact material $\mathrm{AgSnO}_{2^{\prime}}$ contact 16 A	250V／16 A	250V／5 A	$250 \mathrm{~V} / 3 \mathrm{~A}$	$230 \mathrm{~V} / \mathrm{PA}$（690 VA）	$230 \mathrm{~V} / 3 \mathrm{~A}(690 \mathrm{VA})$ till max output $\mathrm{C}=14 \mathrm{uF}$	1500w	\times	$250 \mathrm{~V} / 3 \mathrm{~A}$	250V／10A
Typeofload		$\overline{\text { AC14 }}$	$$	\square	$-$	$-$	$\stackrel{\square}{\square}$	$\begin{aligned} & \bar{m}- \\ & \text { DC13 } \end{aligned}$	$\overline{\bar{m} \sim}$
Contact material AgSnO_{2} ，contact 16 A	$250 \mathrm{~V} / 6 \mathrm{~A}$	$250 \mathrm{~V} / 6 \mathrm{~A}$	250 V／6 A	24V／16A	24V／6A	24V／4A	24V／16 A	24V／2 A	24V／2A

SA3－02B／Ni＊，SA3－06M／Ni＊，SA3－012M／Ni＊									
Type ofload		$-$	$-$	$\stackrel{\square}{\text { Acsa uncompensated }}$	AC5a compensated		$\underset{\text { AC6a }}{\substack{\text { B/E }}}$	$\wedge_{\text {AC7b }}$	$\stackrel{\square}{\text { AC12 }}$
Contact material AgNi contact 8 A	$250 \mathrm{~V} / 8 \mathrm{~A}$	$250 \mathrm{~V} / 2.5 \mathrm{~A}$	250V1．5A	238 V 1.5 A （345Va）	\times	400 W	\times	250V／1．5 A	$250 \mathrm{~V} / 5 \mathrm{~A}$
Type ofload		$\overline{\mathrm{AC} 14}$		$-\square$	$-$	$-\mathrm{M}-$	$\stackrel{\square}{\square-12}$	$\overline{\mathrm{m}} \overline{\mathrm{DC13}}$	$\overline{\bar{m} n}$
Contact material AgNi contact 8 A	$250 \mathrm{~V} / 3 \mathrm{~A}$	$250 \mathrm{~V} / 3 \mathrm{~A}$	$250 \mathrm{~V} / 3 \mathrm{~A}$	24V／8 A	24V／3 A	24V／2 A	24V／8 A	24V／1 A	24V／1 A

SA3－06M／Ni＊，SA3－04M／Ni＊									
Type ofload	$\begin{gathered} \underset{{ }_{c}^{c o s q 2095}}{ } \\ \mathrm{AC1} \end{gathered}$	$-(M)-$	$-(M)$	$\stackrel{\square}{\square}$			$\begin{aligned} & \text { B\|E } \\ & \text { AC6a } \end{aligned}$	An AC7b	$\stackrel{\square}{\mathrm{AC12}}$
Contact material AgNi contact 16 A	$250 \mathrm{~V} / 16 \mathrm{~A}$	250V／5 A	250V／3 A	$230 \mathrm{~V} / 3 \mathrm{~A}(690 \mathrm{VA})$	\times	800 W	x	$250 \mathrm{~V} / 3 \mathrm{~A}$	250V／10 A
Type ofload	$\begin{gathered} \text { BC13 } \\ \hline \text { AC } \end{gathered}$	$\overline{\text { AC14 }}$	$\begin{aligned} & \overline{W_{4-1}^{2}} \\ & \text { AC15 } \end{aligned}$	$-\square$	$-$	$-$	$\stackrel{\square}{\text { DC12 }}$	\bar{m} DC13	$\bar{\sim}$
Contact material AgNi contact 16 A	$250 \mathrm{~V} / 6 \mathrm{~A}$	250 V／6 A	$250 \mathrm{~V} / 6 \mathrm{~A}$	$24 \mathrm{~V} / 16 \mathrm{~A}$	24V／6 A	24V／4	24V／16A	24V／2 A	24V／2

JA3－018M（U／D1－U／D9）， SA3－022M（RE1－RE6，OUT1－OUT2，RE11－RE16，SHUTTER）， EA3－022M（RE1－RE6，OUT1－OUT2，RE11－RE16，SHUTTER）， FA3－612M（FAN1－FAN3，RE）				
Type ofload	$\underset{{ }_{\cos 82095}}{\mathrm{AC1}}$	- M		$\stackrel{\square}{\square C 1}$
Contact material AgNi contact 6 A	250V／6 A	$230 \mathrm{~V} / 0.8 \mathrm{~A}$	$230 \mathrm{~V} / 1.3 \mathrm{~A}$	$\begin{gathered} 30 \mathrm{~V} / 3 \mathrm{~A} \\ 110 \mathrm{~V} / 2 \mathrm{~A} \\ 220 \mathrm{~V} / 0.12 \mathrm{~A} \end{gathered}$

Load	bulbs，halogen buibs	$\begin{aligned} & 12-24 \mathrm{~V} \text { low- } \\ & \text { voltage bubs, coil } \\ & \text { transformers } \end{aligned}$	12－24 V low－voltage bulbs，electric transformers	LEDs	energy－saving fluorescent tubes	control method	
	M，Mexmu	－ 5	上二析	（4）	매 7	\checkmark	\sim
	R	L	c	dimmable	dimmable	entering edge	trailing edge
DA3－22M	－	－	－	－	－	－	－
DA3－66M	－	－	－	－	－	－	－
Explanations							
	El．bulbs loads： el．bulb，halogen light		（R）	$\sqrt{100}$	Elektronic ballasts for fluoresce		（L）
$\widehat{R, L, C, C}$	Dimmer with defined load： R－resistive，L－inductive，C－capacitive			$\text { 思 }]_{1=2}$	Inductive loads（transformers）： feromagnetic and toroid transformers for lights with various voltage．		
$=\square$	Fluorescent light： fluorescent lights uncompensated			$\bigcirc 0$	Switch： switch－control contact of various device		
$\cdots \square \square=$	Fluorescent light： fluorescent light compensated in series			$\frac{1}{0}$	Button control button		
$\xrightarrow[1_{10 \mu F}]{\square=\sim}$	Fluorescent light： fluorescent light compensated in parallel			$\sqrt{200}$	Control module： analog control module 0－10 V		
प \square	Fluorescent light： fluorescent light economical			（M）	Motor		

Category of use	Typical use
AC current， $\cos \varphi$	P／S（－）
AC－1	Non－inductive or slightly inductive load，resistance furnace． Includes all appliances supplied by AC current with power factor $(\cos \varphi) \geq 0.95$ ． Examples of usage：resistance furnace，industrial loads．
AC－2	Motors with slip－ring armature，switching off．
AC－3	Motors with short－circuit armature，motor switching when in operation． This category applies to switching off motors with short－circuit armature while in operation．While switching，contactor switches current． which is 5 up to 7 times rated current of motor．
AC－5a	Switching of electrical gas－filled lights，fluorescent lights．
AC－5b	El．bulb switching． Enables low contact loading due to resistance of cold fi ber is many times smaller that the one of hot fi ber．
AC－6a	Switching of transformers．
AC－7b	Load of motors for home appliances．
AC－12	Switching of semiconductor loads with separation transformers．
AC－13	Switching of semiconductor loads with separation transformers．
AC－14	Switching of low electro－magnetic loads（max． 72 VA ）．
AC－15	Management of alternating electro－magnetic loads． This category applies to switching inductive loads with input for closed electro－magnetic circuit higher than 72 VA． Use：switching coils of contactors．

DC current，$t=L / R(s)$
DC－1 Non－inductive or low inductive load，resistive furnaces．
DC－3 Shunt motors：start－up，braking by backset，reversion，resistive braking，
DC－5 Series motor：start－up，braking by backset，reversion，resistive braking．
DC－12 Management of resistive loads and fixed loads with insulation by opto－electric element．
DC－13 Switching of electromagnets．
DC－14 Switching of electromagnetic loads in circuits with limiting resistor．

1) Surface mounted

Wall mounted in an installation box with spacing of 65 mm .

EST3	GSB3-40/S
EHT3	GSB3-6/S
GBP3-60x	GSP3-100
GCR33-11	GR3-61
GCH3-31	IDRT3-1
GRT3-50	WMR3-21
GSB3-00	WSB33-20
GSB3-60	WSB3-20H
GSBB-80	WSB3-40
GSB3-20/S	WSB3-40H

2) DIN Rail mounted

On DIN rail according to EN 60715 .

ADC3-60M	DAC3-04M	M13-02M
BPS3-01M	DCDA-33M	M13-02M/EHT
BPS3-02M	EA3-022M	PS3-30/iNELS
CU3-01M	EMDC-64M	PS3-100/iNELS
CU3-02M	FA3-612M	SA3-04M
CU3-05M	GSM3-01M	SA3-06M
CU3-06M	Імз-140м	SA3-012M
CU3-07M	IOU3-108M	SA3-022M
DA3-66M	JA3-018M	TI3-60M
DA3-22M	LBC3-02M	

6) Ceiling mounting

DMD3-1

1－modul

ADC3－60M DA3－22M DA3－22M
DAC -04 M DAC3－04M
DCDA－33M DCDA－33M
EMDC－64M
GSM3－01M EMDC－64M
GSM3－01M
IM 3 －140M

LBC3－02M PS3－30／iNELS SA3－04M
SA3－06M SA3－06M
TIB－60M $\xrightarrow[\text { RFDA－73M／RGB }]{ }$

	GCR3－11	GSB3－60
	GDB3－10	GSB3－80
	GMR3－61	GSB3－20／S
	GRT3－50	GSB3－40／5
\square	GSB3－40	GSB3－60／S
明哏貯		

$$
\begin{array}{ll}
\text { CU3-01M } & \text { FA3-612M } \\
\text { CU3-02M } & \text { IOU3-108M } \\
\text { C3--5M } & \text { JAB-018M } \\
\text { CU3-06M } & \text { PS3-100/iNELS } \\
\text { DAA-6M } & \text { SA3-012M } \\
\text { EA3-022M } & \text { SA3-022M }
\end{array}
$$

｜P65

ELKO EP Germany, GmbH
ELKO EP UK Ltd.

Kuwait

Saudi Arabia

Franchises

ELKO EP, s.r.O. | Palackeho 493 | 76901 Holesov, Vsetuly | Czech Republic phone: +420 573514221 | fax: +420 573514227 |elko@elkoep.com | www.elkoep.com Published: 02/2021 | Modifications or amendments reserved | © Copyright ELKO EP, s.r.o. | 1st edition

[^0]: . . basic features inplemented only
 . partial support via Asclil or selecte
 … partial support vial ASCll or suporectecte calls and texts only

[^1]: indication power supply

